Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 3 | 582-586

Article title

Constrained thermal denaturation of DNA under fixed linking number

Content

Title variants

Languages of publication

EN

Abstracts

EN
A DNA molecule with freely fluctuating ends undergoes a sharp thermal denaturation transition upon heating. However, in circular DNA chains and some experimental setups that manipulate single DNA molecules, the total number of turns (linking number) is constant at all times. The consequences of this additional topological invariant on the melting behaviour are nontrivial. Below, we investigate the melting characteristics of a homogeneous DNA where the linking number along the melting curve is preserved by supercoil formation in duplex portions. We obtain the mass fraction and the number of loops and supercoils below and above the melting temperature. We also argue that a macroscopic loop appears at T
c and calculate its size as a function of temperature.

Publisher

Journal

Year

Volume

10

Issue

3

Pages

582-586

Physical description

Dates

published
1 - 6 - 2012
online
17 - 6 - 2012

Contributors

author
  • Department of Physics, Koç University, Sarıyer, 34450, İstanbul, Turkey
author
  • Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, 76100, Israel

References

  • [1] R.M. Wartell, A.S. Benight, Phys. Rep. 126, 67 (1985) http://dx.doi.org/10.1016/0370-1573(85)90060-2[Crossref]
  • [2] B. Alberts et al., Essential cell biology (Garland Science, New York, 2004)
  • [3] I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 882 (2001) http://dx.doi.org/10.1016/S0006-3495(01)76067-5[Crossref]
  • [4] S. Cocco, R. Monasson, J.F. Marko, P. Natl. Acad. Sci. USA 98, 8608 (2001) http://dx.doi.org/10.1073/pnas.151257598[Crossref]
  • [5] D. Marenduzzo, A. Trovato, A. Maritan, Phys. Rev. E, 64, 031901 (2001) http://dx.doi.org/10.1103/PhysRevE.64.031901[Crossref]
  • [6] A. Marziali, M. Akeson, Anu. Rev. Biomed Eng. 3, 195 (2001) http://dx.doi.org/10.1146/annurev.bioeng.3.1.195[Crossref]
  • [7] M.E. Fisher, J. Chem. Phys. 45, 1469 (1966) http://dx.doi.org/10.1063/1.1727787[Crossref]
  • [8] D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1456 (1966) http://dx.doi.org/10.1063/1.1727785[Crossref]
  • [9] B. Duplantier, J. Stat. Phys. 54, 581 (1989) http://dx.doi.org/10.1007/BF01019770[Crossref]
  • [10] Y. Kafri, D. Mukamel, L. Peliti, Phys. Rev. Lett. 85, 4988 (2000) http://dx.doi.org/10.1103/PhysRevLett.85.4988[Crossref]
  • [11] Z. Bryant et al., Nature 424, 338 (2003) http://dx.doi.org/10.1038/nature01810[Crossref]
  • [12] E.J. Rensburg, E. Orlandini, D.W. Sumners, M.C. Tesi, S.G. Whittington, J. Phys. A-Math. Gen. 26, L981, (1993) http://dx.doi.org/10.1088/0305-4470/26/19/002[Crossref]
  • [13] J.H. White, Am. J. Math. 91, 693 (1969) http://dx.doi.org/10.2307/2373348[Crossref]
  • [14] J. Rudnick, R. Bruinsma, Phys. Rev. E. 65 030902(R) (2002) http://dx.doi.org/10.1103/PhysRevE.65.030902[Crossref]
  • [15] T. Garel, H. Orland, E. Yeramian, arXiv:grqc/ 0407036v1
  • [16] M. Sayar, B. Avşaroğlu, A. Kabakçıoğlu, Phys. Rev. E 81, 041916 (2010) http://dx.doi.org/10.1103/PhysRevE.81.041916[Crossref]
  • [17] A. Kabakçıoğlu, E. Orlandini, D. Mukamel, Phys Rev E. 80, 010903(R) (2009)
  • [18] A. Bar, A. Kabakçıoğlu, D. Mukamel, Phys. Rev. E 84, 041935 (2011) http://dx.doi.org/10.1103/PhysRevE.84.041935[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0070-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.