Preferences help
enabled [disable] Abstract
Number of results
2012 | 10 | 4 | 850-857
Article title

Equation of state and initial temperature of quark gluon plasma at RHIC

Title variants
Languages of publication
In gold-gold collisions of the Relativistic Heavy Ion Collider a perfect fluid of strongly interacting quark gluon plasma (sQGP) is created. The time evolution of this fluid can be described by hydrodynamical models. After an expansion, hadrons are created during the freeze-out period. Their distribution reveals information about the final state. To investigate the time evolution one needs to analyze penetrating probes: e.g. direct photon observations. In this paper we analyze a 1+3 dimensional solution of relativistic hydrodynamics. We calculate momentum distribution, azimuthal asymmetry and momentum correlations of direct photons. Based on earlier fits to hadronic spectra, we compare photon calculations to measurements to determine the equations of state and the initial temperature of sQGP. We find that the initial temperature in the center of the fireball is 507±12 MeV, while for the sound speed we get c
s=0.36±0.02. We also estimate a systematic error of these results. We find that the measured azimuthal asymmetry is also compatible with this model. We also predict a photon source that is significantly larger in the out direction than in the side direction.
Physical description
1 - 8 - 2012
17 - 7 - 2012
  • Department of Atomic Physics, Eötvös University, Pázmány Péter s. 1/A, H-1117, Budapest, Hungary
  • Department of Atomic Physics, Eötvös University, Pázmány Péter s. 1/A, H-1117, Budapest, Hungary
  • [1] R.A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007)[Crossref]
  • [2] L.D. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953)
  • [3] I.M. Khalatnikov, Zhur. Eksp. Teor. Fiz. 27, 529 (1954)
  • [4] S.Z. Belenkij, L.D. Landau, Nuovo Cim. Suppl. 3S10, 15 (1956)[Crossref]
  • [5] R.C. Hwa, Phys. Rev. D 10, 2260 (1974)[Crossref]
  • [6] C.B. Chiu, E.C.G. Sudarshan, K.-H. Wang, Phys. Rev. D 12, 902 (1975)[Crossref]
  • [7] J.D. Bjorken, Phys. Rev. D 27, 140 (1983)[Crossref]
  • [8] T.S. Biro, Phys. Lett. B 487, 133 (2000)[Crossref]
  • [9] T. Csörgő, M. I. Nagy, M. Csanád, Phys. Lett. B 663, 306 (2008)[Crossref]
  • [10] A. Bialas, R.A. Janik, R.B. Peschanski, Phys. Rev. C 76, 054901 (2007)[Crossref]
  • [11] T. Csörgő, L.P. Csernai, Y. Hama, T. Kodama, Heavy Ion Phys. A 21, 73 (2004)[Crossref]
  • [12] M. Csanád, M. Vargyas, Eur. Phys. J. A 44, 473 (2010)[Crossref]
  • [13] Z. Fodorm S. D. Katz, In: The Landolt-Börnstein Database, edited by R. Stock (Springer-Verlag, Heidelberg, 2010), 1, 0908.3341
  • [14] M. Csanád, Acta Phys. Pol. B 40, 1193 (2009)
  • [15] F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)[Crossref]
  • [16] A. Adare et al. (PHENIX), Phys. Rev. Lett. 104, 132301 (2010)[Crossref]
  • [17] F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)[Crossref]
  • [18] S. Borsányi et al., J. High Energy Phys. 11, 077 (2010)[Crossref]
  • [19] A. Adare et al. (PHENIX), Phys. Rev. Lett. 98, 162301 (2007)[Crossref]
  • [20] R.A. Lacey, A. Taranenko, PoS CFRNC2006, 021 (2006)
  • [21] A. Adare et al. (PHENIX Collaboration) (2011)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.