PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 3 | 552-559
Article title

The stress tensor of an atomistic system

Content
Title variants
Languages of publication
EN
Abstracts
EN
We prove that the stress tensor conservation equation expressing the local equilibrium condition of a body results from the invariance of its partition function under canonical point transformations. From this result the expression of the stress tensor of a general atomistic system (with short range interactions) in terms of its microscopic degrees of freedom can be obtained. The derivation, which can be extended to encompass the quantum mechanical case, works in the canonical as well as the micro-canonical ensemble and is valid for systems endowed with arbitrary boundary conditions. As an interesting by-product of our general approach, we are able to positively answer the old question concerning the uniqueness of the stress tensor expression.
Publisher

Journal
Year
Volume
10
Issue
3
Pages
552-559
Physical description
Dates
published
1 - 6 - 2012
online
17 - 6 - 2012
References
  • [1] J. H. Irving, J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950) http://dx.doi.org/10.1063/1.1747782[Crossref]
  • [2] D. H. Tsai, J. Chem. Phys. 70, 1375 (1979) http://dx.doi.org/10.1063/1.437577[Crossref]
  • [3] J. J. Erpenbeck, W. W. Wood, In: Modern Theoretical Chemistry, Ed. B. J. Berne, Vol. 6, Part B, p. 1 (Plenum Press, New York, 1977)
  • [4] J. J. Erpenbeck, Phys. Rev. E 51, 4296 (1995) http://dx.doi.org/10.1103/PhysRevE.51.4296[Crossref]
  • [5] R. G. Winkler, H. Morawitz, D. Y. Yoon, Mol. Phys. 75, 669 (1992) http://dx.doi.org/10.1080/00268979200100491[Crossref]
  • [6] L. Mistura, Int. J. Thermophys. 8, 397 (1987) http://dx.doi.org/10.1007/BF00503951[Crossref]
  • [7] L. Mistura, J. Chem. Phys. 83, 3635 (1985) http://dx.doi.org/10.1063/1.449170[Crossref]
  • [8] O. H. Nielsen, R. M. Martin, Phys. Rev. Lett. 50, 697 (1983) http://dx.doi.org/10.1103/PhysRevLett.50.697[Crossref]
  • [9] O. H. Nielsen, R. M. Martin, Phys. Rev. B 32, 3780 (1985) http://dx.doi.org/10.1103/PhysRevB.32.3780[Crossref]
  • [10] R. J. Needs, Phys. Rev. Lett. 58, 53 (1987) http://dx.doi.org/10.1103/PhysRevLett.58.53[Crossref]
  • [11] P. Ziesche, J. Gräfenstein, O. H. Nielsen, Phys. Rev. B 37, 8167 (1988) http://dx.doi.org/10.1103/PhysRevB.37.8167[Crossref]
  • [12] J. Gräfenstein, P. Ziesche, Phys. Rev. B 53, 7143 (1996) http://dx.doi.org/10.1103/PhysRevB.53.7143[Crossref]
  • [13] A. Martin Pendás, J. Chem. Phys. 117, 965 (2002) http://dx.doi.org/10.1063/1.1484385[Crossref]
  • [14] N. O. Folland, Phys. Rev. B 34, 8296 (1986) http://dx.doi.org/10.1103/PhysRevB.34.8296[Crossref]
  • [15] O. H. Nielsen, R. M. Martin, Phys. Rev. B 37, 10905 (1988) http://dx.doi.org/10.1103/PhysRevB.37.10905[Crossref]
  • [16] L. Landau, E. Lifchitz, Théorie de lélasticité, Vol. VII (Eds. MIR, Moscou, 1984)
  • [17] S. Morante, G. C. Rossi, M. Testa, J. Chem. Phys. 125, 034101 (2006) http://dx.doi.org/10.1063/1.2214719[Crossref]
  • [18] G. C. Rossi, M. Testa, J. Chem. Phys. 132, 1 (2010) http://dx.doi.org/10.1063/1.3316134[Crossref]
  • [19] L. Landau, E. Lifchitz, Mécanique, Vol. I (Eds. MIR, Moscou, 1984)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0040-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.