PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 4 | 1013-1017
Article title

One and two soliton solutions for seventh-order Caudrey-Dodd-Gibbon and Caudrey-Dodd-Gibbon-KP equations

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work, we explore more applications of the simplified form of the bilinear method to the seventhorder Caudrey-Dodd-Gibbon (CDG) and the Caudrey-Dodd-Gibbon-KP (CDG-KP) equation. We formally derive one and two soliton solutions for each equation. We also show that the two equations do not show resonance.
Publisher
Journal
Year
Volume
10
Issue
4
Pages
1013-1017
Physical description
Dates
published
1 - 8 - 2012
online
17 - 7 - 2012
References
  • [1] P. J. ’Caudrey, R. K. Doddand J. D. Gibbon, Proc. Royal Society of London 351, 407 (1976) http://dx.doi.org/10.1098/rspa.1976.0149[Crossref]
  • [2] Y. Zarmi, Phys. Rev. E 83, 056606 (2010) http://dx.doi.org/10.1103/PhysRevE.83.056606[Crossref]
  • [3] A.M. Wazwaz, Math. Meth. Appl. Sci. 34, 1580 (2011) http://dx.doi.org/10.1002/mma.1460[Crossref]
  • [4] B. B. Kadomtsev, V. I. Petviashvili, Sov. Phys. Dokl. 15, 539 (1970)
  • [5] R. Hirota, M. Ito, J. Phys. Soc. Japan 52, 744 (1983) http://dx.doi.org/10.1143/JPSJ.52.744[Crossref]
  • [6] R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO9780511543043[Crossref]
  • [7] R. Hirota, Phys. Rev. Lett. 27, 1192 (1971) http://dx.doi.org/10.1103/PhysRevLett.27.1192[Crossref]
  • [8] W. Hereman, A. Nuseir, Math. Comput. Sim. 43, 13 (1997) http://dx.doi.org/10.1016/S0378-4754(96)00053-5[Crossref]
  • [9] A. Biswas, Phys. Lett. A 372, 5941 (2008) http://dx.doi.org/10.1016/j.physleta.2008.07.052[Crossref]
  • [10] M. Dehghan, A. Shokri, Comput. Math. Sim. 79, 700 (2008) http://dx.doi.org/10.1016/j.matcom.2008.04.018[Crossref]
  • [11] A.M. Wazwaz, Appl. Math. Comput. 190, 633 (2007) http://dx.doi.org/10.1016/j.amc.2007.01.056[Crossref]
  • [12] A.M. Wazwaz, Appl. Math. Comput. 199, 133 (2008) http://dx.doi.org/10.1016/j.amc.2007.09.034[Crossref]
  • [13] A.M. Wazwaz, Appl. Math. Comput. 200, 437 (2008) http://dx.doi.org/10.1016/j.amc.2007.11.032[Crossref]
  • [14] A.M. Wazwaz, Appl. Math. Comput. 201, 168 (2008) http://dx.doi.org/10.1016/j.amc.2007.12.009[Crossref]
  • [15] A.M. Wazwaz, Appl. Math. Comput. 201, 489 (2008) http://dx.doi.org/10.1016/j.amc.2007.12.037[Crossref]
  • [16] A.M. Wazwaz, Appl. Math. Comput. 204, 162 (2008) http://dx.doi.org/10.1016/j.amc.2008.06.011[Crossref]
  • [17] A.M. Wazwaz, Math. Comput. Modelling 55, 1845 (2012) http://dx.doi.org/10.1016/j.mcm.2011.11.082[Crossref]
  • [18] A.M. Wazwaz, Physica Scripta 84, 065007 (2011) http://dx.doi.org/10.1088/0031-8949/84/06/065007[Crossref]
  • [19] A.M. Wazwaz, Commun. Nonlinear Sci. 17, 1500 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.08.027[Crossref]
  • [20] A.M. Wazwaz, Physica Scripta 84, 055006 (2011) http://dx.doi.org/10.1088/0031-8949/84/05/055006[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0037-8
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.