PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 3 | 631-636
Article title

Nonlinear reaction-diffusion: a microscopic approach

Content
Title variants
Languages of publication
EN
Abstracts
EN
A microscopic theory for reaction-difusion (R-D) processes is developed from Einstein’s master equation including a reactive term. The mean field formulation leads to a generalized R-D equation for the n-th order annihilation reaction A + A + A + ... + A → 0, and the steady state solutions exhibit long range power law behavior showing the relative dominance of sub-diffusion over reaction effects in constrained systems, or conversely short range concentration distribution with finite support describing situations where diffusion is slow and extinction is fast. We apply the theory to analyze experimental data for morphogen gradient formation in the wing disc of the Drosophila embryo.
Publisher

Journal
Year
Volume
10
Issue
3
Pages
631-636
Physical description
Dates
published
1 - 6 - 2012
online
17 - 6 - 2012
Contributors
author
  • Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, 1050, Bruxelles, Belgium, jpboon@ulb.ac.be
author
  • Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, 1050, Bruxelles, Belgium, jlutsko@ulb.ac.be
  • International School of Brussels, Kattenberg 19, 1170, Bruxelles, Belgium
References
  • [1] O. Wartlick, A. Kicheva, M. Gonzalez-Gaitan, Cold. Spring Harb. Perspect. Biol. 1, a001255 (2011) http://dx.doi.org/10.1101/cshperspect.a001255[Crossref]
  • [2] E. Abad, S. B. Yuste, K. Lindenberg, Phys. Rev. E 81, 031115 (2010)
  • [3] S. B. Yuste, E. Abad, K. Lindenberg, Phys. Rev. E 82, 061123 (2010)
  • [4] Y. He, S. Burov, R. Metzler, E. Barkai, Phys. Rev. Lett. 101, 058101 (2008) http://dx.doi.org/10.1103/PhysRevLett.101.058101[Crossref]
  • [5] M. Magdrziarz, A. Weron, K. Burnecki, J. Klafter, Phys. Rev. Lett. 103, 180602 (2009) http://dx.doi.org/10.1103/PhysRevLett.103.180602[Crossref]
  • [6] J. Szymanski, M. Weiss, Phys. Rev. Lett. 103, 038102 (2009) http://dx.doi.org/10.1103/PhysRevLett.103.038102[Crossref]
  • [7] M. R. Horton, F. Hofling, J. O. Radler, T. Franosch Soft Matter. 6, 2648 (2010) http://dx.doi.org/10.1039/b924149c[Crossref]
  • [8] J. F. Lutsko, J. P. Boon, Phys. Rev. E 77, 051103 (2008)
  • [9] D. O. Kharchenko, V. O. Kharchenko, Physica A 354, 262 (2005) http://dx.doi.org/10.1016/j.physa.2005.01.057[Crossref]
  • [10] A. Eldar, D. Rosin, B.-Z. Shilo, N. Barkai, Dev. Cell. 5, 635 (2003) http://dx.doi.org/10.1016/S1534-5807(03)00292-2[Crossref]
  • [11] C. Han, D. Yan, T.Y. Belenkaya, X. Lin, Development 132, 667 (2005) http://dx.doi.org/10.1242/dev.01636[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0020-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.