PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 3 | 540-551
Article title

Self-assembly mechanism in colloids: perspectives from statistical physics

Content
Title variants
Languages of publication
EN
Abstracts
EN
Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model - the Kern-Frenkel model - describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperaturedensity plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.
Publisher
Journal
Year
Volume
10
Issue
3
Pages
540-551
Physical description
Dates
published
1 - 6 - 2012
online
17 - 6 - 2012
References
  • [1] G. M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. 99, 4769 (2002) http://dx.doi.org/10.1073/pnas.082065899[Crossref]
  • [2] G. M. Whitesides, B. Grzybowski, Science 295, 2418 (2002) http://dx.doi.org/10.1126/science.1070821[Crossref]
  • [3] N.W. Ashcroft, N. D. Mermin, Solid State Physics (Thomson Learning 1976)
  • [4] J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. I: Fundamentals (Academic, London, 1991) [WoS]
  • [5] A. V. Finkelstein, O. B. Ptitsyn, Protein Physics (Academic Press 2002)
  • [6] S. C. Glotzer, Science 306, 419 (2004) http://dx.doi.org/10.1126/science.1099988[Crossref]
  • [7] S. C. Glotzer, M. J. Solomon, Nature Mater. 6, 557 (2007) http://dx.doi.org/10.1038/nmat1949[Crossref]
  • [8] A. Walther, A. H. E. Müller, Soft Matter 4, 663 (2008) http://dx.doi.org/10.1039/b718131k[Crossref]
  • [9] A. B. Pawar, I. Kretzchmar, Macromol. Rapid Commun 31, 150 (2010) http://dx.doi.org/10.1002/marc.201090000[Crossref]
  • [10] A. J. Williamson, A. W. Wilber, J. P. K. Doyle, A. A. Louis, Soft Matter 7, 3423 (2011) http://dx.doi.org/10.1039/c0sm01377c[Crossref]
  • [11] L. Hong, A. Cacciuto, E. Luijten, S. Granick, Langmuir 24, 621 (2008) http://dx.doi.org/10.1021/la7030818[Crossref]
  • [12] Q. Chen, S. C. Bae, S. Granick, Nature 469, 382 (2011)
  • [13] F. Romano, F. Sciortino, Nature Materials 10, 171 (2011) http://dx.doi.org/10.1038/nmat2975[Crossref]
  • [14] F. Romano, F. Sciortino, Soft Matter 7, 5799 (2011) http://dx.doi.org/10.1039/c0sm01494j[Crossref]
  • [15] N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003) http://dx.doi.org/10.1063/1.1569473[Crossref]
  • [16] A. Giacometti, G. Pastore, F. Lado, Mol. Phys. 107, 555 (2009) http://dx.doi.org/10.1080/00268970902889642[Crossref]
  • [17] A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 131, 174114 (2009) http://dx.doi.org/10.1063/1.3256002[Crossref]
  • [18] A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 132, 174110 (2010) http://dx.doi.org/10.1063/1.3415490[Crossref]
  • [19] F. Lado, Phys. Lett. 89A, 196 (1982)
  • [20] F. Lado, Mol. Phys. 7, 283 (1982) http://dx.doi.org/10.1080/00268978200100202[Crossref]
  • [21] F. Lado, Mol. Phys. 47, 299 (1982) http://dx.doi.org/10.1080/00268978200100212[Crossref]
  • [22] F. Lado, E. Lomba, M. Lombardero, J. Chem. Phys. 103, 481 (1995) http://dx.doi.org/10.1063/1.469615[Crossref]
  • [23] R. Zwanzig, J. Chem. Phys. 22, 1420 (1954) http://dx.doi.org/10.1063/1.1740193[Crossref]
  • [24] J.A. Barker, D. Henderson, J. Chem. Phys. 47, 2856 (1967) http://dx.doi.org/10.1063/1.1712308[Crossref]
  • [25] C. Gögelein et al., J. Chem. Phys. 129, 085102 (2008) http://dx.doi.org/10.1063/1.2951987[Crossref]
  • [26] C. Gögelein, F. Romano, F. Sciortino, A. Giacometti, J. Chem. Phys. in press (2012)
  • [27] M. Doi and S.F. Edwards, Theory of Polymer Dynamics (Oxford Univ. Press 1986)
  • [28] H. Löwen, Phys. Rep. 237, 249 (1994) http://dx.doi.org/10.1016/0370-1573(94)90017-5[Crossref]
  • [29] A.P. Henninen, J.H.J. Thijssen, E.C.M. Vermolen, M. Dijskra, A. Van Blaaderen, Nat. Mater. 3, 593 (2007) http://dx.doi.org/10.1038/nchembio1007-593[Crossref]
  • [30] J. P. Hansen, I. R. McDonald, Theory of Simple Liquids (Academic, New Yor
  • [31] S. Labík, A. Malijevský, P. Voňka, Mol. Phys. 56, 709 (1985) http://dx.doi.org/10.1080/00268978500102651[Crossref]
  • [32] C. G. Gray, K. E. Gubbins, Theory of Molecular Fluids, Vol. 1: Fundamentals (Clarendon, Oxford, 1984)
  • [33] L. Vega, E. de Miguel, L. F. Rull, G. Jackson, I. A. McLure, J. Chem. Phys. 96, 2296 (1992) http://dx.doi.org/10.1063/1.462080[Crossref]
  • [34] H. Liu, S. Garde, and S. Kumar, J. Chem. Phys. 123, 174505 (2005) http://dx.doi.org/10.1063/1.2085051[Crossref]
  • [35] F. Sciortino, A. Giacometti, G. Pastore, Phys. Rev. Lett. 103, 237801 (2009) http://dx.doi.org/10.1103/PhysRevLett.103.237801[Crossref]
  • [36] F. Sciortino, A. Giacometti, G. Pastore, Phys. Chem. Chem. Phys. 12, 11869 (2010) http://dx.doi.org/10.1039/c0cp00504e[Crossref]
  • [37] D. Henderson, J.A. Parker, Physical Chemistry, an advanced treatise Vol. VIIIA, (1971)
  • [38] J.A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976) http://dx.doi.org/10.1103/RevModPhys.48.587[Crossref]
  • [39] D. Henderson, O. H. Scalise, W. S. Smith, J. Chem. Phys. 72, 2431 (1980) http://dx.doi.org/10.1063/1.439437[Crossref]
  • [40] C.N. Likos, Zs T. Nèmeth, H. Löwen, J. Phys: Condens. Matter 6, 10965 (1994) http://dx.doi.org/10.1088/0953-8984/6/50/007[Crossref]
  • [41] J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971) http://dx.doi.org/10.1063/1.1674820[Crossref]
  • [42] H. C. Andersen, D. Chandler, J.D. Weeks, Adv. Chem. Phys. 34, 105 (1976) http://dx.doi.org/10.1002/9780470142530.ch2[Crossref]
  • [43] D. Chandler, J.D. Weeks, H.C. Andersen, Science 220, 787 (1983) http://dx.doi.org/10.1126/science.220.4599.787[Crossref]
  • [44] D. Chandler H.C. Anderson, J. Chem. Phys. 57, 1930 (1972) http://dx.doi.org/10.1063/1.1678513[Crossref]
  • [45] E. Bianchi, R. Blaak, C. N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011) http://dx.doi.org/10.1039/c0cp02296a[Crossref]
  • [46] R. Fantoni, A. Giacometti, F. Sciortino, G. Pastore, Soft Matter 7, 2419 (2011) http://dx.doi.org/10.1039/c0sm00995d[Crossref]
  • [47] A. Reinhardt et al., J. Chem. Phys. 134, 104905 (2011) http://dx.doi.org/10.1063/1.3557059[Crossref]
  • [48] J.M. Tavares, P. I. C. Teixeira, M. M. Telo de Gama, F. Sciortino, J. Chem. Phys. 132, 234502 (2010) http://dx.doi.org/10.1063/1.3435346[Crossref]
  • [49] E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006) http://dx.doi.org/10.1103/PhysRevLett.97.168301[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0019-x
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.