Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 2 | 519-523

Article title

Vaaisible upconversion emission of Er3+-doped and Er3+/Yb3+-codoped LiInO2

Content

Title variants

Languages of publication

EN

Abstracts

EN
Lithium-indium oxide is a high-density (5.9 g·cm−3), wide band-gap semiconductor with promising applications for scintillating detection of solar neutrinos as well as for efficient phosphorescence when doped with Er3+ or Sm3+ ions. In this report, we demonstrate visible upconversion emission of Er3+-doped LiInO2 synthesized by a simple solid-state chemistry procedure and discuss mechanisms responsible for pumping the Er3+ ions to upper levels. Intense upconversion emission is observed in the green and red spectral regions under near-infrared excitation, and it is greatly enhanced by co-doping with Yb3+ ions. We also examined the upconversion intensity change as a function of temperature, and, consequently, possible applications of this material as a low-temperature sensor.

Publisher

Journal

Year

Volume

10

Issue

2

Pages

519-523

Physical description

Dates

published
1 - 4 - 2012
online
31 - 3 - 2012

Contributors

  • Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000, Novi Sad, Serbia
  • Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
  • Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000, Novi Sad, Serbia
  • Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000, Novi Sad, Serbia
  • Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia

References

  • [1] M. Balcerzyk et al., IEEE Nucl. Sci. Symp, IEEE Trans. Sci. 6, 25 (2000)
  • [2] K. Kushida, T. Koba, K. Kuriyama, J. Appl. Phys. 93, 2691 (2003) http://dx.doi.org/10.1063/1.1543228[Crossref]
  • [3] G-Q. Zhang, S-T. Zhang, X-F. Wu, Phys. Stat. Sol. A 207, 101 (2010)
  • [4] S.A. Naidu, U.V. Varadaraju, Electrochem. Solid-State Lett. 11, J44 (2008)
  • [5] H. Lin et al., J. Appl. Phys. 93, 186 (2003) http://dx.doi.org/10.1063/1.1527209[Crossref]
  • [6] F. Auzel, Chem. Rev. 104, 139 (2004) http://dx.doi.org/10.1021/cr020357g[Crossref]
  • [7] F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, J. Phys. Chem. B 107, 1107 (2003) http://dx.doi.org/10.1021/jp0218692[Crossref]
  • [8] S. Xu et al., Chem. Phys. Lett. 385, 263 (2004) http://dx.doi.org/10.1016/j.cplett.2003.12.104[Crossref]
  • [9] A.S. Oliveira et al., Appl. Phys. Lett. 72, 753 (1998) http://dx.doi.org/10.1063/1.120884[Crossref]
  • [10] Lj.R. Djačanin et al., Phys. Status Solidi C 8, 2830 (2011) http://dx.doi.org/10.1002/pssc.201084138[Crossref]
  • [11] H. Glaum, S. Voigt, R. Hoppe, Z. Anorg. Allg. Chem. 598, 129 (1991) http://dx.doi.org/10.1002/zaac.19915980113[Crossref]
  • [12] G.S. Maciel, M.A.R.C. Alencar, C.B. de Araujo, A. Patra, J. Nanosci. Nanotechnol. 10, 2143 (2010) http://dx.doi.org/10.1166/jnn.2010.2096[Crossref]
  • [13] H. Guo, et al., J. All. Comp. 415, 280 (2006) http://dx.doi.org/10.1016/j.jallcom.2005.08.008[Crossref]
  • [14] A.S.S. de Camargo, et al., J. Phys. Condens. Matter 19, 246209 (2007) http://dx.doi.org/10.1088/0953-8984/19/24/246209[Crossref]
  • [15] A.H. Khalid, K. Kontis, Sens. 8, 5673 (2008) http://dx.doi.org/10.3390/s8095673[Crossref]
  • [16] N. Ishiwada, S. Fujioka, T. Ueda, T. Yokomori, Opt. Lett. 36, 760 (2011) http://dx.doi.org/10.1364/OL.36.000760[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0009-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.