PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 2 | 390-397
Article title

Physical implications of Fisher-information’s scaling symmetry

Content
Title variants
Languages of publication
EN
Abstracts
EN
We study the scaling properties of Fisher’s information measure (FIM) and show that from these one can straightforwardly deduce significant quantum-mechanical results. Specifically, we investigate the scaling properties of Fisher’s measure I and encounter that, from the concomitant operating rules, several interesting, albeit known, results can be derived. This entails that such results can be regarded as pre-configured by the conjunction of scaling and information theory. The central notion to be arrived at is that scaling entails that I must obey a certain partial differential equation (PDE). These PDE-solutions have properties that enable the application of a Legendre-transform (LT). The conjunction PDE+LT leads one to obtain several quantum results without recourse to the Schrödinger’s equation.
Publisher

Journal
Year
Volume
10
Issue
2
Pages
390-397
Physical description
Dates
published
1 - 4 - 2012
online
31 - 3 - 2012
Contributors
author
  • Facultad de Ingeniería, Grupo de Investigación Teórica y Aplicada en Teoría de la Información (GTyATI), Universidad Nacional de La Plata, 1900, La Plata, Argentina
References
  • [1] P. W. Anderson, Science 177, 303 (1972) http://dx.doi.org/10.1126/science.177.4047.393[Crossref]
  • [2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, Oxford, 2002) http://dx.doi.org/10.1093/acprof:oso/9780198509233.001.0001[Crossref]
  • [3] R. N. Silver, In: Physics and Probability, W. T. Grandy Jr. and P. W. Milonni (Eds.) (Cambridge University Press, Cambridge, England, 1992)
  • [4] B. R. Frieden, Physics from Fisher information measure (Cambridge, University Press, Cambridge, 1998) http://dx.doi.org/10.1017/CBO9780511622670[Crossref]
  • [5] B. R. Frieden, Science from Fisher information (Cambridge University Press, Cambidge, 2004) http://dx.doi.org/10.1017/CBO9780511616907[Crossref]
  • [6] B. R. Frieden, A. Plastino, A. R. Plastino, B. H. Soffer, Phys. Rev. E 60, 48 (1999) http://dx.doi.org/10.1103/PhysRevE.60.48[Crossref]
  • [7] S. P. Flego, B. R. Frieden, A. Plastino, A. R. Plastino, B. H. Soffer, Phys. Rev. E 68, 016105 (2003) http://dx.doi.org/10.1103/PhysRevE.68.016105[Crossref]
  • [8] F. Olivares, F. Pennini, A. Plastino, Physica A 389, 2218 (2010) http://dx.doi.org/10.1016/j.physa.2010.01.043[Crossref]
  • [9] S. P. Flego, F. Olivares, A. Plastino, M. Casas, Entropy 13, 184 (2011) http://dx.doi.org/10.3390/e13010184[Crossref]
  • [10] S. P. Flego, A. Plastino, A. R. Plastino, Physica A 390, 2276 (2011) http://dx.doi.org/10.1016/j.physa.2011.02.019[Crossref]
  • [11] M. J. W Hall, Phys. Rev. A 62, 012107 (2000) http://dx.doi.org/10.1103/PhysRevA.62.012107[Crossref]
  • [12] F. Pennini, A. Plastino, B. H. Soffer, C. Vignat, Phys. Lett. A 373, 817 (2009) http://dx.doi.org/10.1016/j.physleta.2009.01.007[Crossref]
  • [13] R. Gonzalez-Ferez, J. S. Dehesa, Phys. Rev. Lett. 91, 113001 (2003) http://dx.doi.org/10.1103/PhysRevLett.91.113001[Crossref]
  • [14] J. S. Dehesa, R. Gonzalez-Ferez, P. Sanchez-Moreno, J. Phys. A 40, 1845 (2007) http://dx.doi.org/10.1088/1751-8113/40/8/011[Crossref]
  • [15] A. Katz, Principles of Statistical Mechanics: The Information Theory Approach (Freeman and Co., San Francisco, 1967)
  • [16] E. T. Jaynes, Phys. Rev. 106, 620 (1957) http://dx.doi.org/10.1103/PhysRev.106.620[Crossref]
  • [17] H. Cramer, Mathematical methods of statistics (Princeton University Press, Princeton, NJ, 1946)
  • [18] C. R. Rao, Bull. Calcutta. Math. Soc 37, 81 (1945)
  • [19] W. Greiner and B. Mueller, Quantum mechanics. An introduction (Springer, Berlin, 1988).
  • [20] S. P. Flego, A. Plastino, A. R. Plastino, Physica A 390, 4702 (2011) http://dx.doi.org/10.1016/j.physa.2011.06.050[Crossref]
  • [21] The Schrödinger (SE) enters in [20] because, if one minimizes Fisher’s I subject to constraints, one is straightforwardly led to a SE as the result of the variational process (see, for instance, [6])
  • [22] E. A. Deslogue, Thermal Physics (Holt, Rinehart and Winston, New York, 1968)
  • [23] S. P. Flego, A. Plastino, A. R. Plastino, J. Math. Phys. 52, 082103 (2011) http://dx.doi.org/10.1063/1.3625265[Crossref]
  • [24] F. M. Fernandez and E. A. Castro, Hypervirial theorems (Springer, Berlin, 1987) http://dx.doi.org/10.1007/978-3-642-93349-3[Crossref]
  • [25] K. Banerjee, Proc. R. Soc. London 363, 147 (1978) http://dx.doi.org/10.1098/rspa.1978.0161[Crossref]
  • [26] R. Shankar, Principles of Quantum Mechanics (Plenum Press, New York, 1994)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0007-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.