As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
The relationship between Jacobi’s last multiplier and the Lagrangian of a second-order ordinary differential equation is quite well known. In this article we demonstrate the significance of the last multiplier in Hamiltonian theory by explicitly constructing the Hamiltonians of certain well known first-order systems of differential equations arising in biology.
[2] G. F. Torres del Castillo, J. Phys. A Math. Theor. 43, 265202 (2009) http://dx.doi.org/10.1088/1751-8113/42/26/265202[Crossref]
[3] A. Ghose Choudhury, P. Guha, B. Khanra, J. Math. Anal. Appl. 360, 651 (2009) http://dx.doi.org/10.1016/j.jmaa.2009.06.052[Crossref]
[4] A. Goriely, Integrability and nonintegrability of dynamical systems. Advanced Series in Nonlinear Dynamics, xviii+415 (World Scientific Publishing Co., Inc., River Edge, NJ, 2001) http://dx.doi.org/10.1142/9789812811943[Crossref]
[5] P. Guha and A. Ghose Choudhury, Acta Appl. Math 116, 179 (2011) http://dx.doi.org/10.1007/s10440-011-9637-3[Crossref]
[6] C. G. J. Jacobi, Giornale Arcadico di Scienze, Lettere ed Arti 99, 129 (1844)
[7] C. G. J. Jacobi, J. Reine Angew. Math 27, 199 (1844) http://dx.doi.org/10.1515/crll.1844.27.199[Crossref]
[8] C. G. J. Jacobi, J. Reine Angew. Math 29, 213 (1845) http://dx.doi.org/10.1515/crll.1845.29.213[Crossref]
[9] C. G. J. Jacobi, Astrophys. J. 342, 635 (1989) http://dx.doi.org/10.1086/167623[Crossref]
[10] C. A. Lucey, E. T. Newman, J. Math. Phys. 29, 2430 (1998) http://dx.doi.org/10.1063/1.528129[Crossref]
[11] M. C. Nucci, P. G. L. Leach, arXiv:0709.3231v1 [WoS]
[12] M. C. Nucci, J. Nonlinear Math. Phys. 12, 284 (2005) http://dx.doi.org/10.2991/jnmp.2005.12.2.9[Crossref]
[13] M. C. Nucci, K. M. Tamizhmani, arXiv:1108.2301v1 [WoS]