Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 2 | 405-413

Article title

Dynamical and structural symmetries for the highest Landau levels on the AdS
2

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of the paper is to use the recurrence relations with respect to both indices of the associated Legendre functions for the extraction of the Dirac quantization condition and dynamical symmetry group U(1, 1) corresponding to the highest Landau levels on the hyperbolic plane with uniform magnetic field B. Irreducible representations of the su(2) algebra are obtained by the ladder differential operators which change B by 1/2 unit and mode number by one unit. Two different classes of the irreducible representations of SU(1, 1) with the even and odd boson numbers 2B − 1/2 are extracted for the Bargmann indices 1/4 and 3/4, respectively. Finally, we show that shape invariance symmetry is realized by the ladder operators which shift only the magnetic field B by 1/2 unit.

Publisher

Journal

Year

Volume

10

Issue

2

Pages

405-413

Physical description

Dates

published
1 - 4 - 2012
online
31 - 3 - 2012

Contributors

  • Department of Theoretical Physics and Astrophysics, Faculty of Physics, University of Tabriz, P. O. Box 51666-16471, Tabriz, Iran
  • School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran

References

  • [1] L. Landau, E. Lifchitz, Quantum mechanics: non relativistic theory (Pergamon, New York 1977)
  • [2] J. M. Ferreyra, C. R. Proetto, J. Phys. Condens. Mat. 6, 6623 (1994) http://dx.doi.org/10.1088/0953-8984/6/33/010[Crossref]
  • [3] N. Rohringer, J. Burgdorfer, N. Macris, J. Phys. A Math. Gen. 36, 4173 (2003) http://dx.doi.org/10.1088/0305-4470/36/14/318[Crossref]
  • [4] H. Fakhri, J. Phys. A Math. Gen. 37, 5203 (2004) http://dx.doi.org/10.1088/0305-4470/37/19/007[Crossref]
  • [5] Z. Mouayn, Rep. Math. Phys. 55, 269 (2005) http://dx.doi.org/10.1016/S0034-4877(05)80032-1[Crossref]
  • [6] S. J. Yang, Z. Tao, Y. Yu, S. Feng, J. Phys. Condens. Mat. 18, 11255 (2006) http://dx.doi.org/10.1088/0953-8984/18/49/017[Crossref]
  • [7] P. F. Bracken, Int. J. Theor. Phys. 46, 119 (2007) http://dx.doi.org/10.1007/s10773-006-9218-9[Crossref]
  • [8] S. Twareque Ali, F. Bagarello, J. Math. Phys. 49, 032110 (2008) http://dx.doi.org/10.1063/1.2898117[Crossref]
  • [9] A. Comtet, Ann. Phys. New York 173, 185 (1987) http://dx.doi.org/10.1016/0003-4916(87)90098-4[Crossref]
  • [10] M. Antoine, A. Comtet, S. Ouvry, J. Phys. A Math. Gen. 23, 3699 (1990) http://dx.doi.org/10.1088/0305-4470/23/16/018[Crossref]
  • [11] G. V. Dunne, Ann. Phys. New York 215, 233 (1992) http://dx.doi.org/10.1016/0003-4916(92)90112-Y[Crossref]
  • [12] S. Kim, C. Lee, Ann. Phys. New York 296, 390 (2002) http://dx.doi.org/10.1006/aphy.2002.6224[Crossref]
  • [13] T. T. Wu, C. N. Yang, Nucl. Phys. B107, 365 (1976) http://dx.doi.org/10.1016/0550-3213(76)90143-7[Crossref]
  • [14] S. C. Zhang, J. P. Hu, Science 294, 823 (2001) http://dx.doi.org/10.1126/science.294.5543.823[Crossref]
  • [15] E. Schrödinger, P. Roy. Irish. Acad. A46, 9 (1940)
  • [16] E. Schrödinger, P. Roy. Irish. Acad. A47, 53 (1941)
  • [17] L. Infeld, T. E. Hull, Rev. Mod. Phys. 23, 21 (1951) http://dx.doi.org/10.1103/RevModPhys.23.21[Crossref]
  • [18] L. E. Gendenshtein, JETP Lett. 38, 356 (1983)
  • [19] L. E. Gendenshtein, I. V. Krive, Sov. Phys. Uspekhi 28, 645 (1985) http://dx.doi.org/10.1070/PU1985v028n08ABEH003882[Crossref]
  • [20] F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995) http://dx.doi.org/10.1016/0370-1573(94)00080-M[Crossref]
  • [21] A. Balantekin, Phys. Rev. A57, 4188 (1998)
  • [22] A. B. Balantekin, M. A. C. Ribeiro, A. N. F. Aleixo, J. Phys. A Math. Gen. 32, 2785 (1999) http://dx.doi.org/10.1088/0305-4470/32/15/007[Crossref]
  • [23] J. F. Carinena, A. Ramos, J. Phys. A Math. Gen. 33, 3467 (2000) http://dx.doi.org/10.1088/0305-4470/33/17/305[Crossref]
  • [24] A. Del Sol Mesa, C. Quesne, J. Phys. A Math. Gen. 35, 2857 (2002) http://dx.doi.org/10.1088/0305-4470/35/12/310[Crossref]
  • [25] H. Fakhri, A. Chenaghlou, J. Phys. A Math. Gen. 37, 3429 (2004) http://dx.doi.org/10.1088/0305-4470/37/10/008[Crossref]
  • [26] H. Fakhri, A. Chenaghlou, J. Phys. A Math. Gen. 37, (2004) 7499 http://dx.doi.org/10.1088/0305-4470/37/30/008[Crossref]
  • [27] N. Cotfas, Cent. Eur. J. Phys. 2, 456 (2004) http://dx.doi.org/10.2478/BF02476425[Crossref]
  • [28] N. Cotfas, Cent. Eur. J. Phys. 4, 318 (2006) http://dx.doi.org/10.2478/s11534-006-0023-0[Crossref]
  • [29] H. Fakhri, B. Mojaveri, M. A. Gomshi Nobary, Rep. Math. Phys. 66, 299 (2010) http://dx.doi.org/10.1016/S0034-4877(11)00002-4[Crossref]
  • [30] H. Fakhri, M. Shariati, J. Phys. A Math. Gen. 37, L539 (2004) http://dx.doi.org/10.1088/0305-4470/37/44/L01[Crossref]
  • [31] R. Iengo, R. Ramachandran, J. High Energy Phys. 02, 017 (2002) http://dx.doi.org/10.1088/1126-6708/2002/02/017[Crossref]
  • [32] H. Bateman, A. Erdelyi, Higher transcendental functions, vol. I (McGraw Hill, New York, 1953)
  • [33] N. J. Vilenkin, A. U. Klimyk, Representations of lie groups and special functions vol. II (Dordrecht, Kluwer, 1993)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-011-0113-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.