Preferences help
enabled [disable] Abstract
Number of results
2012 | 10 | 2 | 485-491
Article title

Determination of the LO phonon energy by using electronic and optical methods in AlGaN/GaN

Title variants
Languages of publication
The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant.
Physical description
1 - 4 - 2012
31 - 3 - 2012
  • Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, 26470, Eskisehir, Turkey
  • Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, 26470, Eskisehir, Turkey
  • Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, 26470, Eskisehir, Turkey
  • Department of Physics, Faculty of Science and Arts, Gazi University, Teknikokullar, 06500, Ankara, Turkey
  • Nanotechnology Research Center, Department of Physics, and Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
  • [1] B. A. Danilchenko et al., Phys. Status Solidi B 243, 1529 (2006)[Crossref]
  • [2] S. J. Pearton, J. C. Zolper, R. J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999)[Crossref]
  • [3] S. B. Lisesivdin et al., Appl. Phys. Lett. 91 102113 (2007)
  • [4] M. A. Khan, A. Bhattarai, J. N. Kuznia, D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993)[Crossref]
  • [5] Y. F. Wu et al., IEEE Electr. Device L. 17, 455 (1996)[Crossref]
  • [6] A. F. M. Anwar, Shangli Wu, Richard T. Webster, IEEE T. Electron Dev. 48, 567 (2001)[Crossref]
  • [7] S. B. Lisesivdin, A. Yıldız, M. Kasap, Optoelectron. Adv. Mat. 1, 467 (2007)
  • [8] S. B. Lisesivdin, S. Acar, M. Kasap, S. Ozcelik, S. Gokden, E. Ozbay, Semicond. Sci. Tech. 22, 543 (2007)[Crossref]
  • [9] W. Knap et al., J. Cryst. Growth 281, 194 (2005)[Crossref]
  • [10] D. Zanato, S. Gokden, N. Balkan, B. K. Ridley W. J. Schaff, Semicond. Sci. Tech. 19, 427 (2004)[Crossref]
  • [11] W. Knap et al., J. Cryst. Growth 281, 194 (2005)[Crossref]
  • [12] S. B. Lisesivdin, S. Demirezen, M. D. Caliskan, A. Yıldız, M. Kasap, S. Ozcelik, E. Ozbay, Semicond. Sci. Tech. 23, 095008 (2008)[Crossref]
  • [13] A. Teke et al., New J. Phys. 11, 063031 (2009)[Crossref]
  • [14] S. Gokden, Phsy. Status Solidi A, 200, 369 (2003)[Crossref]
  • [15] S. Gokden, Physica E, 23, 19 (2004)[Crossref]
  • [16] E. Tiras, S. Altinoz, M. Cankurtaran, H. Celik, N. Balkan, J. Mater. Sci. 40, 6391 (2005)[Crossref]
  • [17] H. Morkoc, Handbook of nitride semiconductors and devices, vol. 2 (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008)[Crossref]
  • [18] B. K. Ridley, B. E. Foutz, L. F. Eastman, Phys. Rev. B 61, 16862 (1999)[Crossref]
  • [19] S. B. Lisesivdin, A. Yıldız, N. Balkan, M. Kasap, S. Ozcelik, E. Ozbay, J. Appl. Phys. 108, 013712 (2010)[Crossref]
  • [20] Y. Li, Y. Zhang, Y. Zeng, J. Appl. Phys. 109, 073703 (2011)[Crossref]
  • [21] L. Hsu, W. Walukievicz, Phys. Rev. B 56, 1520 (1997)[Crossref]
  • [22] B. L. Gelmont, M. Shur, M. Sroscio, J. Appl. Phys. 77, 657 (1995)[Crossref]
  • [23] W.Walukiewicz,H. E. Ruda, J. Lagowski, H. C. Gatos, Phys. Rev. B 30, 4571 (1984)[Crossref]
  • [24] S. Gokden, R. Baran, N. Balkan, S. Mazzucato, Physica E, 24, 249 (2004)[Crossref]
  • [25] D. Jena, A. C. Gossard, U. K. Mishra, Appl. Phys. Lett. 76, 1707 (2000)[Crossref]
  • [26] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002)[Crossref]
  • [27] K. Hirakawa, H. Sakaki, J. Yoshino, Appl. Phys. Lett. 45, 253 (1984)[Crossref]
  • [28] G. Abstreiter, M. Cardona, A. Pinczuk In: M. Cardona, G. Guntherodt (Eds.), Topics in applied physics, vol. 54 (Springer, Berlin, 1984) [WoS]
  • [29] T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, J. Appl. Phys. 75, 1098 (1994)[Crossref]
  • [30] I. M. Tiginyanu et al., Phys. Rev. B 64, 233317 (2001)[Crossref]
  • [31] M. Kuball, Surf. Interface Anal. 31, 987 (2001)[Crossref]
  • [32] V. Yu. Davydov et al., Phys. Rev. B 58, 12899 (1998)[Crossref]
  • [33] E. Tiras, M. Gunes, N. Balkan, W. J. Schaff, Phys. Status Solidi B 247, 189 (2009)[Crossref]
  • [34] A. Asgari, M. Kalafi, Mater. Sci. Eng. C 26, 898 (2006)[Crossref]
  • [35] O. Celik, E. Tiras, S. Ardali, S. B. Lisesivdin, E. Ozbay, Phys. Status Solidi C 8, 1625 (2011)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.