PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 1 | 96-101
Article title

Accurate calculation of the bound states of the quantum dipole problem in two dimensions

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We present an accurate calculation of the energies of the bound states of the quantumdipole problemin two dimensions using a Rayleigh-Ritz approach. We obtain an upper bound for the energy of the ground state, which is by far the most precise in the literature for this problem. We also obtain an alternative estimate of the fundamental energy of the model performing an extrapolation of the results corresponding to different subspaces. Finally, our calculation of the energies of the first 500 states shows a perfect agreement with the expected asymptotic behavior.
Publisher

Journal
Year
Volume
10
Issue
1
Pages
96-101
Physical description
Dates
published
1 - 2 - 2012
online
3 - 12 - 2011
Contributors
author
  • Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima, México, paolo.amore@gmail.com
References
  • [1] K. Dasbiswas, D. Goswami, C. D. Yoo, A.T. Dorsey, Phys. Rev. B 81, 064516 (2010) http://dx.doi.org/10.1103/PhysRevB.81.064516[Crossref]
  • [2] R. Landauer, Phys. Rev. 94, 1386 (1954) http://dx.doi.org/10.1103/PhysRev.94.1386.2[Crossref]
  • [3] P. R. Emtage, Phys. Rev. 163, 865 (1967) http://dx.doi.org/10.1103/PhysRev.163.865[Crossref]
  • [4] V. A. Slyusarev, K. A. Chishko, Fiz. Met. Metalloved+. 58, 877 (1984)
  • [5] V. M. Nabutovskii, B. Y. Shapiro, JETP Lett+. 26, 473 (1977)
  • [6] I. M. Dubrovskii, Low Temp. Phys+. 23, 976 (1997) http://dx.doi.org/10.1063/1.593506[Crossref]
  • [7] J. L. Farvacque, P. Fracois, Phys. Status Solidi B 223, 635 (2001) http://dx.doi.org/10.1002/1521-3951(200102)223:3<635::AID-PSSB635>3.0.CO;2-K[Crossref]
  • [8] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, W. Y. Ching, Phys. Rev. A 43, 1186 (1991) http://dx.doi.org/10.1103/PhysRevA.43.1186[Crossref]
  • [9] E. Fattal, R. Baer, R. Kosloff, Phys. Rev. E 53, 1217 (1996) http://dx.doi.org/10.1103/PhysRevE.53.1217[Crossref]
  • [10] J. P. Boyd, Chebyshev and Fourier spectral methods, 2nd edition (Dover, New York, 2001)
  • [11] P. M. Stevenson, Phys. Rev. D 23, 2916 (1981) http://dx.doi.org/10.1103/PhysRevD.23.2916[Crossref]
  • [12] C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers: asymptotic methods and perturbation theory (McGraw-Hill, New York, 1978)
  • [13] Wolfram Research, Inc., MATHEMATICA Version 8.0′ (Wolfram Research Inc., Champaign, Illinois, 2010)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0087-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.