Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 1 | 66-75

Article title

Geometric phase decomposition in the basis of Hermite-Gaussian functions

Content

Title variants

Languages of publication

EN

Abstracts

EN
The work presents geometric phase decomposition for analytical signals using Hermite-Gaussian functions. The decomposition is based on the time-frequency distribution with reassigned and multi-tapered spectrogram resulting in increased phase estimation resolution. Numerical analysis is applied to a number of SU(2) evolutions, such as spin-1/2 particle in a static and rotating magnetic field, as well as polarization rotation of a plane wave in optically active medium. Geometric phase decomposition results are provided also for quantum harmonic oscillator and a radiation field of an electric dipole exited by a short pulse.

Publisher

Journal

Year

Volume

10

Issue

1

Pages

66-75

Physical description

Dates

published
1 - 2 - 2012
online
3 - 12 - 2011

Contributors

  • Department of Radiophysics, Vilnius University, Sauletekio al. 9, bldg. III, LT-10222, Vilnius, Lithuania
  • Department of Radiophysics, Vilnius University, Sauletekio al. 9, bldg. III, LT-10222, Vilnius, Lithuania

References

  • [1] R. Aleksiejunas, V. Ivaska, J. Phys. A-Math. Gen. 34, 8835 (2001) http://dx.doi.org/10.1088/0305-4470/34/42/308[Crossref]
  • [2] R. Aleksiejunas, V. Ivaska, J. Phys. A-Math. Gen. 33, 2383 (2000) http://dx.doi.org/10.1088/0305-4470/33/12/306[Crossref]
  • [3] R. Aleksiejunas, V. Ivaska, Phys. Lett. A 235, 1 (1997) http://dx.doi.org/10.1016/S0375-9601(97)00584-7[Crossref]
  • [4] J. Anandan, J. Christian, K. Wanelik, Am. J. Phys. 65, 180 (1997) http://dx.doi.org/10.1119/1.18570[Crossref]
  • [5] M. Bayram, R. Baraniuk, In: W. J. Fitzgerald, R. L. Smith, A. T. Walden, P. C. Young, (Eds.), Nonlinear and nonstationary signal processing (Cambridge University Press, Cambridge, 2000) 292
  • [6] M. V. Berry, J. Phys. A-Math. Gen. 18, 15 (1985) http://dx.doi.org/10.1088/0305-4470/18/1/012[Crossref]
  • [7] M. V. Berry, Proc. R. Soc. Lon. Ser. A 392, 45 (1984) http://dx.doi.org/10.1098/rspa.1984.0023[Crossref]
  • [8] R. Bhandari, Phys. Rep. 281, 1 (1997) http://dx.doi.org/10.1016/S0370-1573(96)00029-4[Crossref]
  • [9] R. Bhandari, Phys. Lett. A 157, 221 (1991) http://dx.doi.org/10.1016/0375-9601(91)90055-D[Crossref]
  • [10] B. Boashash, Proceedings of the IEEE 80, 520 (1992) http://dx.doi.org/10.1109/5.135376[Crossref]
  • [11] P. Bracken, Cent. Eur. J. Phys. 6, 135 (2008) http://dx.doi.org/10.2478/s11534-007-0045-2[Crossref]
  • [12] L. Cohen, Proceedings of the IEEE 77, 941 (1989) http://dx.doi.org/10.1109/5.30749[Crossref]
  • [13] I. Daubechies, IEEE T. Inform. Theory 34, 605 (1988) http://dx.doi.org/10.1109/18.9761[Crossref]
  • [14] P. Flandrin, IEEE International conference on acoustics, speech, and signal processing, Apr., 11–14, 1988, New York, USA (IEEE, New York, 1988) 2176
  • [15] J. H. Hannay, J. Phys. A-Math. Gen. 18, 221 (1985) http://dx.doi.org/10.1088/0305-4470/18/2/011[Crossref]
  • [16] V. Ivaska, V. Kalesinskas, Lith. J. Phys. 47, 267 (2007) http://dx.doi.org/10.3952/lithjphys.47306[Crossref]
  • [17] R. Jackiw, A. Kerman, Phys. Lett. A, 71, 158 (1979) http://dx.doi.org/10.1016/0375-9601(79)90151-8[Crossref]
  • [18] D. N. Klyshko, Phys-Usp.+ 36, 1005 (1993) http://dx.doi.org/10.1070/PU1993v036n11ABEH002178[Crossref]
  • [19] O. H. Ozaktas, Z. Zalevsky, M. A. Kutay, The fractional Fourier transform: with applications in optics and signal processing (John Wiley & Sons, New York, 2001)
  • [20] S. Pancharatnam, P. Indian Acad. Sci. A 44, 247 (1956)
  • [21] D. B. Percival, A. T. Walden, Spectral analysis for physical applications: multitaper and conventional univariate techniques (Cambridge University Press, Cambridge, 1993) http://dx.doi.org/10.1017/CBO9780511622762[Crossref]
  • [22] B. Tacer, P. J. Loughlin, IEEE international conference on acoustics, speech, and signal processing, May 9–12, 1995, Detroit, USA (IEEE, New York, 1995) 1013 http://dx.doi.org/10.1109/ICASSP.1995.480405[Crossref]
  • [23] W. J. Thompson Comput. Sci. Eng. 1, 84 (1999)
  • [24] D. J. Thomson, In: W. J. Fitzgerald R. L. Smith, A. T. Walden, P. C. Young, (Eds.), Nonlinear and nonstationary signal processing (Cambridge University Press, Cambridge, 2000) 317
  • [25] D. J. Thomson, Proceedings of the IEEE 70, 1055 (1982) http://dx.doi.org/10.1109/PROC.1982.12433[Crossref]
  • [26] J. Xiao, P. Flandrin, IEEE T. Signal Proces. 55, 2851 (2007) http://dx.doi.org/10.1109/TSP.2007.893961[Crossref]
  • [27] W. M. Zhang, arXiv:hep-th/9908117v1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-011-0081-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.