PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 1 | 116-123
Article title

A theoretical forecast of the hydrogen bond changes in the electronic excited state for BN and its derivatives

Content
Title variants
Languages of publication
EN
Abstracts
EN
The relationship between electronic spectral shifts and hydrogen-bonding dynamics in electronically excited states of the hydrogen-bonded complex is put forward. Hydrogen bond strengthening will induce a redshift of the corresponding electronic spectra, while hydrogen bond weakening will cause a blueshift. Time-dependent density function theory (TDDFT) was used to study the excitation energies in both singlet and triplet electronically excited states of Benzonitrile (BN), 4-aminobenzonitrile (ABN), and 4-dimethylaminobenzonitrile (DMABN) in methanol solvents. Only the intermolecular hydrogen bond C≡N...H-O was involved in our system. A fairly accurate forecast of the hydrogen bond changes in lowlying electronically excited states were presented in light of a very thorough consideration of their related electronic spectra. The deduction we used to depict the trend of the hydrogen bond changes in excited states could help others understand hydrogen-bonding dynamics more effectively.
Publisher

Journal
Year
Volume
10
Issue
1
Pages
116-123
Physical description
Dates
published
1 - 2 - 2012
online
3 - 12 - 2011
Contributors
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China, haoce_dlut@126.com
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
author
  • State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
References
  • [1] K.-L. Han, G.-J. Zhao, Hydrogen bonding and transfer in the excited state (John Wiley & Sons Ltd, Chichester, UK, 2010) http://dx.doi.org/10.1002/9780470669143[Crossref]
  • [2] Y. Yamada, N. Mikami, T. Ebata, P. Natl. Acad. Sci. USA 105, 12690 (2008) http://dx.doi.org/10.1073/pnas.0800354105[Crossref]
  • [3] M. K. Shukla, J. J. Leszczynski, J. Phys. Chem. B 112, 5139 (2008) http://dx.doi.org/10.1021/jp7100557[Crossref]
  • [4] K. S. Kim, K. S. Oh, J. Y. Lee, P. Natl. Acad. Sci. USA 97, 6373 (2000) http://dx.doi.org/10.1073/pnas.97.12.6373[Crossref]
  • [5] H. L. Liu, G Guo, Cent. Eur. J. Phys. 9, 1261 (2011) http://dx.doi.org/10.2478/s11534-011-0028-1[Crossref]
  • [6] R. Jimenez, G. R. Fleming, P. V. Kumar, M. Maroncelli, Nature 369, 471 (1994) http://dx.doi.org/10.1038/369471a0[Crossref]
  • [7] V. P. Zhdanov, Cent. Eur. J. Phys. 9, 909 (2011) http://dx.doi.org/10.2478/s11534-010-0104-y[Crossref]
  • [8] S. B. Suh et al., J. Am. Chem. Soc. 126, 2186 (2004) http://dx.doi.org/10.1021/ja037607a[Crossref]
  • [9] V. P. Zhdanov, Cent. Eur. J. Phys. 9, 1366 (2011) http://dx.doi.org/10.2478/s11534-011-0054-z[Crossref]
  • [10] D. Laage, I. Burghardt, T. Sommerfeld, J. T. Hynes, Chemphyschem 4, 61 (2003) http://dx.doi.org/10.1002/cphc.200390009[Crossref]
  • [11] R. L. Mills, Y. Lu, K. Akhtar, Cent. Eur. J. Phys. 8, 318 (2010) http://dx.doi.org/10.2478/s11534-009-0106-9[Crossref]
  • [12] G.-J. Zhao, B. H. Northrop, P. J. Stang, K.-L. Han, J. Phys. Chem. A 114, 3418 (2010)
  • [13] X. J. Peng et al., J. Am. Chem. Soc. 129, 1500 (2007) http://dx.doi.org/10.1021/ja0643319[Crossref]
  • [14] B. Erdinc, F. Soyalp, H. Akkus, Cent. Eur. J. Phys. 9, 1315 (2011) http://dx.doi.org/10.2478/s11534-011-0036-1[Crossref]
  • [15] F. Yu et al., J. Am. Chem. Soc. 133, 11030 (2011) http://dx.doi.org/10.1021/ja202582x[Crossref]
  • [16] M. D. Roberts, Cent. Eur. J. Phys. 8, 915 (2010) http://dx.doi.org/10.2478/s11534-010-0022-z[Crossref]
  • [17] W. Ling, S.-L. Yan, Cent. Eur. J. Phys. 9, 1084 (2011) http://dx.doi.org/10.2478/s11534-010-0050-8[Crossref]
  • [18] H. F. Wang, M. S. Wang, M. L. Xin, E. F. Liu, C. L. Yang, Cent. Eur. J. Phys. 9, 792 (2011) http://dx.doi.org/10.2478/s11534-010-0099-4[Crossref]
  • [19] A. F. Philip, K. T. Eisenman, G. A. Papadantonakis, W. D. Hoff, Biochemistry-Us 47, 13800 (2008) http://dx.doi.org/10.1021/bi801730y[Crossref]
  • [20] L.-C. Zhou et al., J. Photoch. Photobio. A 187, 305 (2007) http://dx.doi.org/10.1016/j.jphotochem.2006.10.027[Crossref]
  • [21] T. T. Ivancevic, Cent. Eur. J. Phys. 8, 737 (2010) http://dx.doi.org/10.2478/s11534-009-0148-z[Crossref]
  • [22] R.-K. Chen et al., J. Mol. Struct. 876, 102 (2008) http://dx.doi.org/10.1016/j.molstruc.2007.05.045[Crossref]
  • [23] T. S. Chu, K. L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008) http://dx.doi.org/10.1039/b715180b[Crossref]
  • [24] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 113, 4788 (2009)
  • [25] T. S. Chu, Y. Zhang, K. L. Han, Int. Rev. Phys. Chem. 25, 201 (2006) http://dx.doi.org/10.1080/01442350600677929[Crossref]
  • [26] M. D. Roberts, Cent. Eur. J. Phys. 9, 1016 (2011) http://dx.doi.org/10.2478/s11534-011-0031-6[Crossref]
  • [27] G. J. Zhao et al., J. Phys. Chem. A 115, 6390 (2011)
  • [28] S. Xiao, L. Tang, H. Wang, Cent. Eur. J. Phys. 9, 1077 (2011) http://dx.doi.org/10.2478/s11534-011-0008-5[Crossref]
  • [29] K. L. Han, G.Z. He, J. Photoch. Photobiol. C 8, 55 (2007) http://dx.doi.org/10.1016/j.jphotochemrev.2007.03.002[Crossref]
  • [30] W. Ling, S.-L. Yan, Cent. Eur. J. Phys. 9, 1084 (2011) http://dx.doi.org/10.2478/s11534-010-0050-8[Crossref]
  • [31] G. J. Zhao, K. L. Han, P. J. Stang, J. Chem. Theory Comput. 5, 1955 (2009) http://dx.doi.org/10.1021/ct900216m[Crossref]
  • [32] V. R. Pedireddi, S. Chatterjee, A. Ranganathan, C. N. R. Rao, J. Am. Chem. Soc. 119, 10867 (1997) http://dx.doi.org/10.1021/ja972289z[Crossref]
  • [33] K. L. Han, G. Z. He, N. Q. Lou, J. Chem. Phys. 105, 8699 (1996) http://dx.doi.org/10.1063/1.472651[Crossref]
  • [34] H. Dube et al., Angew. Chem-Ger. Edit. 120, 2638 (2008) http://dx.doi.org/10.1002/ange.200705180[Crossref]
  • [35] H. Dube et al., Angew. Chem. Int. Edit. 47, 2600 (2008) http://dx.doi.org/10.1002/anie.200705180[Crossref]
  • [36] K. Gaal-Nagy, Cent. Eur. J. Phys. 8, 833 (2010) http://dx.doi.org/10.2478/s11534-009-0167-9[Crossref]
  • [37] S. M. Borisov, O. S. Wolfbeis, Chem. Rev. 108, 423 (2008) http://dx.doi.org/10.1021/cr068105t[Crossref]
  • [38] G. F. Wei, W.-C. Qiang, W.-L. Chen, Cent. Eur. J. Phys. 8, 574 (2010) http://dx.doi.org/10.2478/s11534-009-0108-7[Crossref]
  • [39] L. Zhan, K. Hu, Y. Tang, Cent. Eur. J. Phys. 8, 672 (2010) http://dx.doi.org/10.2478/s11534-009-0114-9[Crossref]
  • [40] G.-J. Zhao, K.-L. Han, Chemphyschem 9, 1842 (2008) http://dx.doi.org/10.1002/cphc.200800371[Crossref]
  • [41] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 111, 2469 (2007)
  • [42] G.-J. Zhao, K.-L. Han, J. Phys. Chem. A 113, 14329 (2009)
  • [43] G.-J. Zhao, K.-L. Han, J. Chem. Phys. 127, 024306 (2007) http://dx.doi.org/10.1063/1.2752808[Crossref]
  • [44] G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, K.-L. Han, J. Phys. Chem. B 111, 8940 (2007)
  • [45] G.-J. Zhao, K.-L. Han, In: A. Sánchez, S. J. Gutierrez, (Eds.), Photochemistry research progress (Nova Science Publishers, New York, 2008) 161
  • [46] G.-J. Zhao, K.-L. Han, Biophys. J. 94, 38 (2008) http://dx.doi.org/10.1529/biophysj.107.113738[Crossref]
  • [47] G.-J. Zhao et al., Chem.-Eur. J. 14, 6935 (2008) http://dx.doi.org/10.1002/chem.200701868[Crossref]
  • [48] S. Chai et al., Phys. Chem. Chem. Phys. 11, 4385 (2009) http://dx.doi.org/10.1039/b816589k[Crossref]
  • [49] G.-J. Zhao, K.-L. Han, J. Comput. Chem. 29, 2010 (2008) http://dx.doi.org/10.1002/jcc.20957[Crossref]
  • [50] G.-J. Zhao, B. H. Northrop, K.-L. Han, P. J. Stang, J. Phys. Chem. A 114, 9007 (2010)
  • [51] J. R. Reimers, L. E. Hall, J. Am. Chem. Soc. 121, 3730 (1999) http://dx.doi.org/10.1021/ja983878n[Crossref]
  • [52] S. S. Andrews, S. G. Boxer, J. Phys. Chem. A 104, 11853 (2000)
  • [53] C. Y. Huang, T. Wang, F. Gai, Chem. Phys. Lett. 371, 731 (2003) http://dx.doi.org/10.1016/S0009-2614(03)00353-1[Crossref]
  • [54] Z. Getahun, C. Y. Huang, T. Wang, B. De Leon, W. F. DeGrado, F. Gai, J. Am. Chem. Soc. 125, 405 (2003) http://dx.doi.org/10.1021/ja0285262[Crossref]
  • [55] K. C. Schultz, L. Supekova, Y. H. Ryu, J. M. Xie, R. Perera, P. G. Schultz, J. Am. Chem. Soc. 128, 13984 (2006) http://dx.doi.org/10.1021/ja0636690[Crossref]
  • [56] S. Mukherjee, P. Chowdhury, W. F. DeGrado, F. Gai, Langmuir 23, 11174 (2007) http://dx.doi.org/10.1021/la701686g[Crossref]
  • [57] J. H. Choi, K. I. Oh, H. Lee, C. Lee, M. Cho, J. Chem. Phys. 128, 134506 (2008) http://dx.doi.org/10.1063/1.2844787[Crossref]
  • [58] C. Bulliard et al., J. Phys. Chem. A 103, 7766 (1999). http://dx.doi.org/10.1021/jp990922s[Crossref]
  • [59] D. J. Aschaffenburg, R. S. Moog, J. Phys. Chem. B 113, 12736 (2009) http://dx.doi.org/10.1021/jp905802a[Crossref]
  • [60] A. Mordzinski, A. L. Sobolewski, D. H. Levy, J. Phys. Chem. A 101, 8221 (1997)
  • [61] A. L. Sobolewski, W. Domcke, Chem. Phys. Lett. 250, 428 (1996) http://dx.doi.org/10.1016/0009-2614(96)00014-0[Crossref]
  • [62] E. Lippert et al., Angew. Chem.-Ger. Edit. 73, 695 (1961) http://dx.doi.org/10.1002/ange.19610732103[Crossref]
  • [63] E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, J. A. Miehe, Adv. Chem. Phys. 68, 1 (1987)
  • [64] C. J. Joödicke, H. P. Lüthi, J. Am. Chem. Soc 125, 252 (2003) http://dx.doi.org/10.1021/ja020361+[Crossref]
  • [65] Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 103, 3899 (2003) http://dx.doi.org/10.1021/cr940745l[Crossref]
  • [66] J.-S. Yang, K.-L. Liau, C.-M. Wang, C.-Y. Hwang, J. Am. Chem. Soc. 126, 12325 (2004) http://dx.doi.org/10.1021/ja047604d[Crossref]
  • [67] K. A. Zachariasse, S. I. Druzhinin, W. Bosch, R. Machinek, J. Am. Chem. Soc. 126, 1705 (2004) http://dx.doi.org/10.1021/ja037544w[Crossref]
  • [68] A. Köhn, C. Hättig, J. Am. Chem. Soc. 126, 7399 (2004) http://dx.doi.org/10.1021/ja0490572[Crossref]
  • [69] D. Rappoport, F. Furche, J. Am. Chem. Soc. 126, 1277 (2004) http://dx.doi.org/10.1021/ja037806u[Crossref]
  • [70] C. J. Jamorski, M. E. Casida, J. Phys. Chem. B 108, 7132 (2004)
  • [71] A. D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913[Crossref]
  • [72] A. Schäsfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994) http://dx.doi.org/10.1063/1.467146[Crossref]
  • [73] M. Ray, Y. Nakao, H. Sato, H. Sakaba, S. Sakaki, J. Am. Chem. Soc. 128, 11927 (2006) http://dx.doi.org/10.1021/ja0625374[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0073-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.