PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 1 | 151-158
Article title

Nonlinear increase in bubbles radii caused by sound in a bubbly liquid

Content
Title variants
Languages of publication
EN
Abstracts
EN
The nonlinear interaction of acoustic and entropy modes in a bubbly liquid is considered. The reasons for interaction are both nonlinearity and dispersion. In the field of intense sound, a decrease in the mixture density is predicted. That corresponds to the well-established growth of bubbles volumes due to rectified diffusion. The nonlinear interaction of modes as a reason for a bubble to grow due to sound, is discovered. The example considers variation in the mixture density and bubbles radii caused by acoustic soliton.
Keywords
Publisher
Journal
Year
Volume
10
Issue
1
Pages
151-158
Physical description
Dates
published
1 - 2 - 2012
online
3 - 12 - 2011
References
  • [1] L. I. Mandelshtam, M. A. Leontowich, JETPh 7(3), 438 (1937)
  • [2] S. Temkin, J. Fluid Mech. 211, 61 (1990) http://dx.doi.org/10.1017/S0022112090001495[Crossref]
  • [3] D. T. Blackstock, J. Acoust. Soc. Am. 77(6), 2050 (1985) http://dx.doi.org/10.1121/1.391778[Crossref]
  • [4] M. Hamilton, Y. Ilinskii, E. Zabolotskaya: Dispersion, In: Nonlinear Acoustics M. Hamilton, D. Blackstock (eds.). (Academic Press, 1998), 151
  • [5] S. B. Leble, Nonlinear waves in waveguides: with stratification (Springer-Verlag, Berlin, 1991)
  • [6] L. van Wijngaarden, Ann. Rev. Fluid Mech. 4, 369 (1972) http://dx.doi.org/10.1146/annurev.fl.04.010172.002101[Crossref]
  • [7] M. Plesset, A. Prosperetti, Ann. Rev. Fluid Mech. 9, 145 (1977) http://dx.doi.org/10.1146/annurev.fl.09.010177.001045[Crossref]
  • [8] R. Nigmatulin, Dynamics of multiphase media (Hemisphere, New York, Vols. 1 and 2, 1991)
  • [9] V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, Wave propagation in gas-liquid media (CRC Press, Boca Raton, 1993)
  • [10] W. Lauterborn, T. Kurz, I. Akhatov, Nonlinear Acoustics in Fluids. In: Springer Handbook of Acoustics, Ed. T. D. Rossing (Springer, 2007) 257
  • [11] B. -T. Chu, L. S. G. Kovasznay, Journ. Fluid. Mech. 3, 494 (1958) http://dx.doi.org/10.1017/S0022112058000148[Crossref]
  • [12] A. Perelomova, Acta Acust. United Ac. 89, 754 (2003)
  • [13] A. Perelomova, Acta Acust. United Ac. 96, 43 (2010) http://dx.doi.org/10.3813/AAA.918254[Crossref]
  • [14] A. Perelomova, Can. J. Phys. 88, 293 (2010) http://dx.doi.org/10.1139/P10-011[Crossref]
  • [15] A. Prosperetti, J. Fluid Mech. 168, 457 (1986) http://dx.doi.org/10.1017/S0022112086000460[Crossref]
  • [16] A. Perelomova, Appl. Math. Lett. 13, 93 (2000) http://dx.doi.org/10.1016/S0893-9659(00)00082-3[Crossref]
  • [17] J. B. Keller, M. Miksis, J. Acoust. Soc. Am. 68, 628 (1980) http://dx.doi.org/10.1121/1.384720[Crossref]
  • [18] S. Makarov, M. Ochmann, Acustica 82, 579 (1996)
  • [19] V. A. Krasilnikov, V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984)
  • [20] T. G. Leighton, The Acoustic Bubble (Academic Press, New York, 1994)
  • [21] A. Perelomova, Phys. Lett. A 357, 42 (2006) http://dx.doi.org/10.1016/j.physleta.2006.04.014[Crossref]
  • [22] O. V. Rudenko, S. I. Soluyan, Theoretical foundations of nonlinear acoustics (Plenum, New York, 1977)
  • [23] E. A. Neppiras, Ultrasonics 18, 201 (1980) http://dx.doi.org/10.1016/0041-624X(80)90120-1[Crossref]
  • [24] R. I. Nigmatulin, N. S. Khabeev, F. B. Nagiev, Heat Mass Transfer 24, 1033 (1981) http://dx.doi.org/10.1016/0017-9310(81)90134-4[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0065-9
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.