PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 6 | 1381-1386
Article title

The Airy transform and associated polynomials

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Airy transform is an ideally suited tool to treat problems in classical and quantum optics. Even though the relevant mathematical aspects have been thoroughly investigated, the possibilities it offers are wide and some features, such as the link with special functions and polynomials, still contain unexplored aspects. In this note we will show that the so called Airy polynomials are essentially the third order Hermite polynomials. We will also prove that this identification opens the possibility of developing new conjectures on the properties of this family of polynomials.
Publisher

Journal
Year
Volume
9
Issue
6
Pages
1381-1386
Physical description
Dates
published
1 - 12 - 2011
online
15 - 10 - 2011
Contributors
  • Dipartimento di Statistica Probabilità e Statistica Applicata, Università “Sapienza”, P.le A. Moro, 5, 00185, Roma, Italy, dario.sacchetti@uniroma1.it
References
  • [1] P. Appell, J. Kampé de Fériét, Fonctions Hypergéometriqués Polynôme d’Hermite, (Gauthier-Villars, Paris, 1926)
  • [2] G. Dattoli, Appl. Math. Comput. 141, 151 (2003) http://dx.doi.org/10.1016/S0096-3003(02)00329-6[Crossref]
  • [3] G. Dattoli, J. Math. Anal. Appl. 284, 447 (2003) http://dx.doi.org/10.1016/S0022-247X(03)00259-2[Crossref]
  • [4] K. B. Wolf, Integral Transforms in Science and Engineering, (Plenum Press, New York, 1979)
  • [5] A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson, A. J. Solomon, arXiv:quant-ph/0409152v1
  • [6] G. Dattoli, E. Sabia, arXiv:1010.1679v1 [WoS]
  • [7] O. Vallée, M. Soares, Airy Functions and application to Physics, (World Scientific, London, 2004)
  • [8] D. V. Widder, Am. Math. Mon. 86, 271 (1979) http://dx.doi.org/10.2307/2320744[Crossref]
  • [9] M. Feng, Phys. Rev. A 64, 034101 (2001) http://dx.doi.org/10.1103/PhysRevA.64.034101[Crossref]
  • [10] C. Lin, T. Hsiung, M. Huang, Europhys. Lett. 83, 30002 (2008) http://dx.doi.org/10.1209/0295-5075/83/30002[Crossref]
  • [11] M. V. Berry, N. J. Balazs, Am. J. Phys. 47, 264 (1979) http://dx.doi.org/10.1119/1.11855[Crossref]
  • [12] J. N. Watson, A treatise on the theory of Bessel Functions, (Cambridge University Press, London 1966)
  • [13] T. Haimo, C. Market, J. Math. Anal. Appl. 168, 89 (1992) http://dx.doi.org/10.1016/0022-247X(92)90191-F[Crossref]
  • [14] G. Dattoli, B. Germano, P. E. Ricci, Appl. Math. Comput. 154, 219 (2004) http://dx.doi.org/10.1016/S0096-3003(03)00705-7[Crossref]
  • [15] J. Lekner, Eur. J. Phys. 30, L43 (2009) http://dx.doi.org/10.1088/0143-0807/30/3/L04[Crossref]
  • [16] G. Dattoli, K. Zhukovsky, arXiv:math-ph/1010.1678v1
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0057-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.