Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 6 | 1381-1386

Article title

The Airy transform and associated polynomials

Content

Title variants

Languages of publication

EN

Abstracts

EN
The Airy transform is an ideally suited tool to treat problems in classical and quantum optics. Even though the relevant mathematical aspects have been thoroughly investigated, the possibilities it offers are wide and some features, such as the link with special functions and polynomials, still contain unexplored aspects. In this note we will show that the so called Airy polynomials are essentially the third order Hermite polynomials. We will also prove that this identification opens the possibility of developing new conjectures on the properties of this family of polynomials.

Publisher

Journal

Year

Volume

9

Issue

6

Pages

1381-1386

Physical description

Dates

published
1 - 12 - 2011
online
15 - 10 - 2011

Contributors

  • Laboratori Nazionali di Frascati, INFN, via E. Fermi 40, I-00044, Frascati, Italy
  • Centro Ricerche Frascati, ENEA, via E. Fermi 45, I-00044, Frascati, Italy
  • Dipartimento di Statistica Probabilità e Statistica Applicata, Università “Sapienza”, P.le A. Moro, 5, 00185, Roma, Italy

References

  • [1] P. Appell, J. Kampé de Fériét, Fonctions Hypergéometriqués Polynôme d’Hermite, (Gauthier-Villars, Paris, 1926)
  • [2] G. Dattoli, Appl. Math. Comput. 141, 151 (2003) http://dx.doi.org/10.1016/S0096-3003(02)00329-6[Crossref]
  • [3] G. Dattoli, J. Math. Anal. Appl. 284, 447 (2003) http://dx.doi.org/10.1016/S0022-247X(03)00259-2[Crossref]
  • [4] K. B. Wolf, Integral Transforms in Science and Engineering, (Plenum Press, New York, 1979)
  • [5] A. Horzela, P. Blasiak, G. E. H. Duchamp, K. A. Penson, A. J. Solomon, arXiv:quant-ph/0409152v1
  • [6] G. Dattoli, E. Sabia, arXiv:1010.1679v1 [WoS]
  • [7] O. Vallée, M. Soares, Airy Functions and application to Physics, (World Scientific, London, 2004)
  • [8] D. V. Widder, Am. Math. Mon. 86, 271 (1979) http://dx.doi.org/10.2307/2320744[Crossref]
  • [9] M. Feng, Phys. Rev. A 64, 034101 (2001) http://dx.doi.org/10.1103/PhysRevA.64.034101[Crossref]
  • [10] C. Lin, T. Hsiung, M. Huang, Europhys. Lett. 83, 30002 (2008) http://dx.doi.org/10.1209/0295-5075/83/30002[Crossref]
  • [11] M. V. Berry, N. J. Balazs, Am. J. Phys. 47, 264 (1979) http://dx.doi.org/10.1119/1.11855[Crossref]
  • [12] J. N. Watson, A treatise on the theory of Bessel Functions, (Cambridge University Press, London 1966)
  • [13] T. Haimo, C. Market, J. Math. Anal. Appl. 168, 89 (1992) http://dx.doi.org/10.1016/0022-247X(92)90191-F[Crossref]
  • [14] G. Dattoli, B. Germano, P. E. Ricci, Appl. Math. Comput. 154, 219 (2004) http://dx.doi.org/10.1016/S0096-3003(03)00705-7[Crossref]
  • [15] J. Lekner, Eur. J. Phys. 30, L43 (2009) http://dx.doi.org/10.1088/0143-0807/30/3/L04[Crossref]
  • [16] G. Dattoli, K. Zhukovsky, arXiv:math-ph/1010.1678v1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-011-0057-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.