Preferences help
enabled [disable] Abstract
Number of results
2011 | 9 | 5 | 1321-1326
Article title

Optical properties of ZnO nanoparticles synthesized by varying the sodium hydroxide to zinc acetate molar ratios using a Sol-Gel process

Title variants
Languages of publication
Material property dependence on the OH−/Zn2+ molar ratio of the precursor was investigated by varying the amount of NaOH during synthesis of ZnO. It was necessary to control the water content and temperature of the mixture to ensure the reproducibility. It was observed that the structural properties, particle size, photoluminescence intensity and wavelength of maximum intensity were influenced by the molar ratio of the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO, indicating a single phase. UV measurements show the absorption that comes from the ZnO nanoparticles in visible region. The absorption edge of these ZnO nanoparticles are shifted to higher energies and the determined band gap energies are blue shifted as the OH−/Zn2 molar ration increases, due to the quantum confinement effects. The photoluminescence characterization of the ZnO nanostructures exhibited a broad emission band centred at green (600 nm) region for all molar ratios except for OH−/Zn2+ = 1.7 where a second blue emission around 468 nm was also observed. The photoluminescence properties of ZnO nanoparticles were largely determined by the size and surface properties of the nanoparticles.
Physical description
1 - 10 - 2011
15 - 9 - 2011
  • [1] J. Joo, S.G. Kwon, J.H. Yu, T. Hyeon, Adv. Mater. 15, 1873 (2005)[Crossref]
  • [2] U. Pal, P. Santiago, J. Phys. Chem. B 109, 15317 (2005)[Crossref]
  • [3] L. Vayssieres, Adv. Mater. 15,464 (2003)[Crossref]
  • [4] L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Chem. Mater. 13,4395(2001)[Crossref]
  • [5] G. Marcietal., J. Phys. Chem. B 105, 1026 (2001)[Crossref]
  • [6] Z.K. Tangetal., Appl. Phys. Lett. 72, 3270 (1998)[Crossref]
  • [7] S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, BocaRaton, FL, 1999) 255
  • [8] B. O’Regan, M. Gratzel, Nature 353, 737 (1991)[Crossref]
  • [9] A.V. Dijken, E.A. Mulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 90, 123 (2000)[Crossref]
  • [10] C. Feldmann, T. Justell, C.R. Ronda, P.J. Schmidt, Adv. Funct. Mater. 13, 101 (2003)[Crossref]
  • [11] A.S. Edelstein, R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications (Institute of Physics Publishing, Bristol, Philadelphia,1996)[Crossref]
  • [12] B.R. Ratnaetal., The 5th International Conference on the Science and Technology of Display Phosphors, 8–10 November 1999, San Diego, California, USA, 295
  • [13] H. Weller,Adv. Mater. 5, 88 (1993)
  • [14] R.J. Lanf, W.D. Bond, Am. Ceram. Soc. Bull. 63, 278 (1984)
  • [15] H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, Physica B 373, 274 (2006)[Crossref]
  • [16] S. Sakohara, M. Ishida, M.A. Anderson, J. Phys. Chem.B 102, 10169 (1998)[Crossref]
  • [17] M. Abdulah, T. Morimoto, K. Okuyama, Adv. Funct. Mater. 13, 1 (2003)[Crossref]
  • [18] O.M. Ntwaeaborwa, P.H. Holloway, Nanotechnology 16, 865 (2005)[Crossref]
  • [19] S.M. Haile, D.W. Johnson, G.H. Wiseman, J. Am. Ceram.Soc. 72, 2004 (1989)[Crossref]
  • [20] L.E. Brus, Nanostruct. Matter. 1, 71 (1992)[Crossref]
  • [21] L.E. Brus, J. Chem. Phys. 79, 5566 (1983)[Crossref]
  • [22] Z. Zhangetal., J. Phys. Chem. B 110, 8566 (2006)[Crossref]
  • [23] Y. Nietal., Nanotechnology 18, 155603 (2007)[Crossref]
  • [24] G.E. Malashkevich, I.M. Melichenko, E.N. Poddenezhnyetal., J. Non-Cryst. Solids 260, 141 (1999)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.