PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 5 | 1267-1279
Article title

Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics

Content
Title variants
Languages of publication
EN
Abstracts
EN
We present a study of fractional configurations in gravity theories and Lagrange mechanics. The approach is based on a Caputo fractional derivative which gives zero for actions on constants. We elaborate fractional geometric models of physical interactions and we formulate a method of nonholonomic deformations to other types of fractional derivatives. The main result of this paper consists of a proof that, for corresponding classes of nonholonomic distributions, a large class of physical theories are modelled as nonholonomic manifolds with constant matrix curvature. This allows us to encode the fractional dynamics of interactions and constraints into the geometry of curve flows and solitonic hierarchies.
Publisher

Journal
Year
Volume
9
Issue
5
Pages
1267-1279
Physical description
Dates
published
1 - 10 - 2011
online
15 - 9 - 2011
Contributors
  • Department of Mathematics and Computer Sciences, Çankaya University, 06530, Ankara, Turkey, dumitru@cancaya.edu.tr
author
  • Science Department, University “Al. I. Cuza” Iaşi, 54, Lascar Catargi street, Iaşi, Romania, 700107, sergiu.vacaru@uaic.ro
References
  • [1] S. Anco, J. Phys. A: Math. Gen. 39, 2043 (2006) http://dx.doi.org/10.1088/0305-4470/39/9/005[Crossref]
  • [2] S. Anco, S. Vacaru, J. Geom. Phys. 59, 79 (2009) http://dx.doi.org/10.1016/j.geomphys.2008.10.006[Crossref]
  • [3] C. Athorne, J. Phys. A: Math. Gen. 21, 4549 (1998) http://dx.doi.org/10.1088/0305-4470/21/24/010[Crossref]
  • [4] D. Baleanu, S. Vacaru, Nonlin. Dyn. 64, 365 (2011) http://dx.doi.org/10.1007/s11071-010-9867-3[Crossref]
  • [5] D. Baleanu, S. Vacaru, Int. J. Phys. 50, 233 (2001) http://dx.doi.org/10.1007/s10773-010-0514-z[Crossref]
  • [6] D. Baleanu, S. Vacaru, arXiv:1007.2866v3 [math-ph]
  • [7] K.S. Chou, C. Qu, J. Phys. Soc. Japan 70, 1912 (2001) http://dx.doi.org/10.1143/JPSJ.70.1912[Crossref]
  • [8] R. E. Goldstein, D. M. Petrich, Phys. Rev. Lett. 67, 3203 (1991) http://dx.doi.org/10.1103/PhysRevLett.67.3203[Crossref]
  • [9] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Amer. Math. Soc., Providence, 2001)
  • [10] J. Langer, R. Perline, Phys. Lett. A 239, 36 (1998) http://dx.doi.org/10.1016/S0375-9601(97)00945-6[Crossref]
  • [11] G.L. Lamb, Jr., J. Math. Phys. 18, 1654 (1977) http://dx.doi.org/10.1063/1.523453[Crossref]
  • [12] G. Mari Beffa, J. Sanders, J.P. Sanders, J. Nonlinear. Sci. 12, 143 (2002) http://dx.doi.org/10.1007/s00332-001-0472-y[Crossref]
  • [13] R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, FTPH no. 59, (Kluwer Academic Publishers, Dordrecht, Boston, London, 1994) http://dx.doi.org/10.1007/978-94-011-0788-4[Crossref]
  • [14] K. Nakayama, H. Segur, M. Wadati, Phys. Rev. Lett. 69, 2606 (1992) http://dx.doi.org/10.1103/PhysRevLett.69.2603[Crossref]
  • [15] J. Sanders, J. P. Wang, Mosc. Math. J. 3, 1369 (2003)
  • [16] R.W. Sharpe, Differential Geometry, (Springer-Verlag, New York, 1997)
  • [17] V. E. Tarasov, Ann. Phys. (NY) 323, 2756 (2008) http://dx.doi.org/10.1016/j.aop.2008.04.005[Crossref]
  • [18] S. Vacaru, Int. J. Geom. Meth. Mod. Phys. 5, 473 (2008) http://dx.doi.org/10.1142/S0219887808002898[Crossref]
  • [19] S. Vacaru, Acta Appl. Math. 110, 73 (2010) http://dx.doi.org/10.1007/s10440-008-9387-z[Crossref]
  • [20] S. Vacaru, arXiv:1004.0625v1 [math.DG]
  • [21] S. Vacaru, arXiv:1004.0628v1 [math-ph]
  • [22] A.A. Kilbas, H. H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, (Elsevier, Amsterdam, 2006)
  • [23] S.G. Samko, A. A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives - Theory and Applications (Gordon and Breach, Linghorne, P.A., 1993)
  • [24] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego CA, (1999)
  • [25] R.L. Magin, Fractional Calculus in Bioengineering, Begell House Publisher, Inc. Connecticut, (2006)
  • [26] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continoum Mechanics, Springer Verlag, Wien and New York (1997)
  • [27] R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, 1505 (2004) http://dx.doi.org/10.1088/0305-4470/37/31/R01[Crossref]
  • [28] I.M. Sokolov, J. Klafter, A. Blumen, Physics Today 55, 48 (2002) http://dx.doi.org/10.1063/1.1535007[Crossref]
  • [29] F. Mainardi, Chaos Sol. Frac. 7, 1461 (1996) http://dx.doi.org/10.1016/0960-0779(95)00125-5[Crossref]
  • [30] O.P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002) http://dx.doi.org/10.1016/S0022-247X(02)00180-4[Crossref]
  • [31] M. Klimek, Czech. J. Phys. 52, 1247 (2002) http://dx.doi.org/10.1023/A:1021389004982[Crossref]
  • [32] E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih, D. Baleanu, J. Math. Anal. Appl. 327, 891 (2007) http://dx.doi.org/10.1016/j.jmaa.2006.04.076[Crossref]
  • [33] D. Baleanu, S.I. Muslih, Phys. Scripta 72, 119 (2005) http://dx.doi.org/10.1238/Physica.Regular.072a00119[Crossref]
  • [34] R.L. Magin, X. Feng, D. Baleanu, Concept. Magn. Reson. A 34A, 16 (2009) http://dx.doi.org/10.1002/cmr.a.20129[Crossref]
  • [35] M.F. Silva, J.A. Tenreiro Machado, A.M. Lopes, Robotica 23, 595 (2005) http://dx.doi.org/10.1017/S0263574704001195[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0040-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.