PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 5 | 1357-1365
Article title

Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube

Content
Title variants
Languages of publication
EN
Abstracts
EN
The constitution of blood demands a yield stress fluid model, and among the available yield stress fluid models for blood flow, the Herschel-Bulkley model is preferred (because Bingham, Power-law and Newtonian models are its special cases). The Herschel-Bulkley fluid model has two parameters, namely the yield stress and the power law index. The expressions for velocity, plug flow velocity, wall shear stress, and the flux flow rate are derived. The flux is determined as a function of inlet, outlet and external pressures, yield stress, and the elastic property of the tube. Further when the power-law index n = 1 and the yield stress τ
0 → 0, our results agree well with those of Rubinow and Keller [J. Theor. Biol. 35, 299 (1972)]. Furthermore, it is observed that, the yield stress and the elastic parameters (t
1 and t
2) have strong effects on the flux of the non-Newtonian fluid flow in the elastic tube. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.
Publisher

Journal
Year
Volume
9
Issue
5
Pages
1357-1365
Physical description
Dates
published
1 - 10 - 2011
online
15 - 9 - 2011
Contributors
  • Department of Mathematics, Sri Venkateswara University, Tirupati, 517502, AP, India
  • Department of Mathematics, Sri Venkateswara University, Tirupati, 517502, AP, India
  • Department of Mathematics, Banaglore University, Bangalore, 560 001, Karnataka, India
References
  • [1] T. Young, Philos. T. R. Soc. Lond. 98, 164 (1808) http://dx.doi.org/10.1098/rstl.1808.0014[Crossref]
  • [2] S.I. Rubinow, J.B. Keller, J. Theor. Biol. 35, 299 (1972) http://dx.doi.org/10.1016/0022-5193(72)90041-0[Crossref]
  • [3] A.C. Burton, Am. J. Physiol. 164, 319 (1951)
  • [4] D.L. Fry, Comput. Biomed. Res. 2, 111 (1968) http://dx.doi.org/10.1016/0010-4809(68)90030-X[Crossref]
  • [5] G.A. Brecher, Am. J. Physiol. 169, 423 (1952)
  • [6] S. Rodbrad, Circulation 11, 280 (1955)
  • [7] A.C. Guyton, In: W.F. Hamilton (Ed.), Handbook of Physiology Circulation II, Vol. 2 (American Physiologic Society, Washington DC, 1963) 1099
  • [8] G.A. Brecher, Venos Return (Grune and Stratton, New York, 1956)
  • [9] J. Bainster, R.W. Torrance, Q. J. Exp. Physiol. 45, 352 (1960)
  • [10] S. Permutt, B. Bromberger-Barnea, H.N. Bane, Med. Thorac. 19, 239 (1962) [PubMed]
  • [11] F.P. Knowlton, E.H. Starling, J. Physiol.-London 44, 206 (1912)
  • [12] P. Chaturani, V.R. Ponnalagar, Biorheology 22, 521 (1985) [PubMed]
  • [13] V.P. Srivastava, M. Sexena, J. Biomech. 27, 921 (1994) http://dx.doi.org/10.1016/0021-9290(94)90264-X[Crossref]
  • [14] N. Iida, Jpn. J. Appl. Phys. 17, 203 (1978) http://dx.doi.org/10.1143/JJAP.17.203[Crossref]
  • [15] G.W. Scott-Blair, D.C. Spanner, An Introduction to Biorheology (Elsevier Scientific Publishing Company, Amsterdam, 1974)
  • [16] G.W. Scott-Blair, Rheol. Acta 5, 184 (1966) http://dx.doi.org/10.1007/BF01982424[Crossref]
  • [17] A.G. Hoekstra, J. van’t-Hoff, A.M. Artoli, P.M.A. Sloot, Future Gener. Comp. Sy. 20, 917 (2004) http://dx.doi.org/10.1016/j.future.2003.12.003[Crossref]
  • [18] D.S. Sankar, K. Hemalatha, Appl. Math. Model. 31, 1847 (2007) http://dx.doi.org/10.1016/j.apm.2006.06.009[Crossref]
  • [19] K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Appl. Math. Comput. 169, 726 (2005) http://dx.doi.org/10.1016/j.amc.2004.09.063[Crossref]
  • [20] C. Tu, M. Deville, J. Biomech. 29, 899 (1996) http://dx.doi.org/10.1016/0021-9290(95)00151-4[Crossref]
  • [21] P. Chaturani, R.P. Swamy, Journal of Biorheology 22, 521 (1985)
  • [22] D.S. Sankar, K. Hemalatha, Appl. Math. Comput. 188, 567 (2007) http://dx.doi.org/10.1016/j.amc.2006.10.013[Crossref]
  • [23] K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Q. Appl. Math. 64, 593 (2005)
  • [24] K. Vajravelu, S. Sreenadh, V. Ramesh-Babu, Int. J. Nonlin. Mech. 40, 83 (2005) http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.001[Crossref]
  • [25] D.S. Snakar, U. Lee, Commun. Nonlinear Sci. 14, 2971 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.10.015[Crossref]
  • [26] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd ed. (Wiley, New York, 2007) 11
  • [27] M.R. Roach, A.C. Burton, Can. J. Biochem. Phys. 37, 557 (1957) http://dx.doi.org/10.1139/o59-059[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0034-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.