PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 5 | 1165-1172
Article title

Electromagnetic field with induced massive term: Case with scalar field

Content
Title variants
Languages of publication
EN
Abstracts
EN
We consider an interacting system of massless scalar and electromagnetic fields, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the isotropization process of the expansion takes place.
Publisher

Journal
Year
Volume
9
Issue
5
Pages
1165-1172
Physical description
Dates
published
1 - 10 - 2011
online
15 - 9 - 2011
Contributors
author
  • Department of Theoretical Physics, Peoples’ Friendship University of Russia, 117198, Moscow, Russia
author
  • Department of Theoretical Physics, Peoples’ Friendship University of Russia, 117198, Moscow, Russia
author
  • Department of Theoretical Physics, Peoples’ Friendship University of Russia, 117198, Moscow, Russia
author
  • Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, 141980, Dubna, Moscow region, Russia, bijan@jinr.ru
References
  • [1] A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 43, 277 (1971) http://dx.doi.org/10.1103/RevModPhys.43.277[Crossref]
  • [2] K.D. Froome, L. Essen, The velocity of light and radio waves (Academis, NY, 1969)
  • [3] B.N. Taylor, H.W. Parker, D.N. Langenberg, Rev. Mod. Phys. 41, 375 (1969) http://dx.doi.org/10.1103/RevModPhys.41.375[Crossref]
  • [4] L. de Broglie, Theorie generale des particles a spin, 2nd edition (Gauthier-Villars, Paris, 1954)
  • [5] A.H. Rosenfeld et al., Rev. Mod. Phys. 40, 77 (1968) http://dx.doi.org/10.1103/RevModPhys.40.77[Crossref]
  • [6] E.R. Williams, J.E. Faller, H. Hill, Phys. Rev. Lett. 26, 721 (1971) http://dx.doi.org/10.1103/PhysRevLett.26.721[Crossref]
  • [7] R.E. Crandall, Am. J. Phys. 51, 698 (1983) http://dx.doi.org/10.1119/1.13149[Crossref]
  • [8] M.A. Chernikov, C.J. Gerber, H.R. Ott, H.J. Gerber, Phys. Rev. Lett. 68, 3383 (1992) http://dx.doi.org/10.1103/PhysRevLett.68.3383[Crossref]
  • [9] B.E. Schaefer, Phys. Rev. Lett. 82, 4964 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.4964[Crossref]
  • [10] E. Fishbach et al., Phys. Rev. Lett. 73, 514 (1994) http://dx.doi.org/10.1103/PhysRevLett.73.514[Crossref]
  • [11] L. Davis, A.S. Goldhaber, M.M. Nieto, Phys. Rev. Lett. 35, 1402 (1975) http://dx.doi.org/10.1103/PhysRevLett.35.1402[Crossref]
  • [12] R. Lakes, Phys. Rev. Lett. 80, 1826 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.1826[Crossref]
  • [13] J. Luo, L.C. Tu, Z.K. Hu, E.J. Luan, Phys. Rev. Lett. 90, 081801 (2003) http://dx.doi.org/10.1103/PhysRevLett.90.081801[Crossref]
  • [14] L.-C. Tu, J. Luo, G.T. Gillies, Rep. Progr. Phys. 68, 77 (2005) http://dx.doi.org/10.1088/0034-4885/68/1/R02[Crossref]
  • [15] A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 82, 939 (2010) http://dx.doi.org/10.1103/RevModPhys.82.939[Crossref]
  • [16] T. Christoduolakis, Th. Grammenos, Ch. Helias, P.G. Kevrekidis, A. Spanou, J. Math. Phys. 47, 042505 (2006) http://dx.doi.org/10.1063/1.2188210[Crossref]
  • [17] C. Uggla, R.T. Jantzen, K. Rosquist, Phys. Rev. D 51, 5522 (1995) http://dx.doi.org/10.1103/PhysRevD.51.5522[Crossref]
  • [18] G. Mie, Ann. Phys.-Leipzig 39, 1 (1912) http://dx.doi.org/10.1002/andp.19123441102[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0033-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.