Preferences help
enabled [disable] Abstract
Number of results
2011 | 9 | 5 | 1280-1287
Article title

Annealing study of two-dimensional patterned Ge nanostructures via nanosphere lithography

Title variants
Languages of publication
Experimental studies on patterning hexagonal Ge nanostructures have been conducted on Si substrates through deposition of Ge with colloidal particles as a mask. The deposited Ge thin film possesses, according to the X-ray diffraction measurements, in plane texture, being epitaxial and aligned with the (111) Si substrate. The size distribution of the patterned Ge nanostructures is narrow, as indicated by the atomic force microscopy and scanning electron microscopy measurements. We have obtained Ge nanostructures with lateral dimension of 490 nm (height 12 nm), 200 nm (height 6 nm) and 82 nm (height 6 nm) by using different sizes of polystyrene spheres. We have performed in depth studies of the Ge nanostructures’ behavior due to thermal and rapid thermal post-annealing processes. FT micro-Raman spectroscopy shows that there is no Si intermixing during the annealing process. In order to quantify the changes in the height and lateral dimension, we have performed atomic force microscopy and white light interferometry analysis. The changes in shape and the decrease in the area of a cross-section of Ge nanostructure will be discussed in respect to similar results shown in the literature for Ge thin films during the annealing process.
Physical description
1 - 10 - 2011
15 - 9 - 2011
  • National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16 Magurele, 077125, Bucharest, Romania
  • National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16 Magurele, 077125, Bucharest, Romania
  • National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16 Magurele, 077125, Bucharest, Romania
  • Physics Department, Babes-Bolyai University, Kogalniceanu 1, RO-3400, Cluj-Napoca, Romania
  • Institute of Physics, Experimentalphysics I, University Augsburg, 86135, Augsburg, Germany
  • [1] J. Konle, H. Presting, H. Kibbel, R. Sauer, Solid State Electron. 45, 1921 (2001)[Crossref]
  • [2] G. Medeiros-Ribeiro et al., Science 279, 353 (1998)[Crossref]
  • [3] J. Stangl, V. Holy, G. Bauer, Rev. Mod. Phys. 76, 725 (2004)[Crossref]
  • [4] J.M. Baribeau, X. Wu, N.L. Rowell, D.J. Lockwood, J. Phys.-Condens. Mat. 18, R139 (2006)[Crossref]
  • [5] T.I. Kamins, R.S. Williams, Appl. Phys. Lett. 71, 1201 (1997)[Crossref]
  • [6] G. Capellini, M. de Seta, C. Spinella, F. Evangelisti, Appl. Phys. Lett. 82, 1772 (2003)[Crossref]
  • [7] A. Karmous et al., Appl. Phys. Lett. 85, 6401 (2004)[Crossref]
  • [8] A. Bernardi et al., Appl. Phys. Lett. 89, 101921 (2006)[Crossref]
  • [9] T.I. Kamins et al., Appl. Phys. Lett. 74, 1773 (1999)[Crossref]
  • [10] L. Vescan, Mat. Sci. Eng. A-Struct. 302, 6 (2001)[Crossref]
  • [11] O.G. Schmidt et al., Appl. Phys. Lett. 77, 4139 (2000)[Crossref]
  • [12] G. Jin, J.L. Liu, K.L. Wang, Appl. Phys. Lett. 76, 3591 (2000)[Crossref]
  • [13] Z. Zhong et al., J. Appl. Phys. 93, 6258 (2003)[Crossref]
  • [14] N. Li, M. Zinke-Allmang, Jpn. J. Appl. Phys. 41, 4626 (2002)[Crossref]
  • [15] V. Craciun, E.S. Lambers, R.K. Singh, I.W. Boyd, Appl. Surf. Sci. 186, 237 (2002)[Crossref]
  • [16] J. Oh, J.C. Campbell, Appl. Surf. Sci. 33, 364 (2004)
  • [17] M. Ulmeanu, M. Filipescu, R.V. Medianu, Phys. Status Solidi C 12, 3584 (2008)[Crossref]
  • [18] F. Burmeister et al., Langmuir 13, 2983 (1997)[Crossref]
  • [19] K. Prabhakaran, F. Maeda, Y. Watanabe, T. Ogino, Appl. Phys. Lett. 76, 2244 (2000)[Crossref]
  • [20] D.A. Hansen, J.B. Hudson, Surf. Sci. 292, 17 (1993)[Crossref]
  • [21] M. Ulmeanu et al., Appl. Surf. Sci. 165, 109 (2000)[Crossref]
  • [22] V. Beyer, J. von Borany, Phys. Rev. B 77, 014107 (2008)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.