PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 5 | 1182-1194
Article title

Nonlinear dispersion of a pollutant ejected into a channel flow

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we study the nonlinear coupled boundary value problem arising from the nonlinear dispersion of a pollutant ejected by an external source into a channel flow. We obtain exact solutions for the steady flow for some special cases and an implicit exact solution for the unsteady flow. Additionally, we obtain analytical solutions for the transient flow. From the obtained solutions, we are able to deduce the qualitative influence of the model parameters on the solutions. Furthermore, we are able to give both exact and analytical expressions for the skin friction and wall mass transfer rate as functions of the model parameters. The model considered can be useful for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water bodies.
Publisher

Journal
Year
Volume
9
Issue
5
Pages
1182-1194
Physical description
Dates
published
1 - 10 - 2011
online
15 - 9 - 2011
Contributors
author
  • Department of Mathematics, University of Central Florida, Orlando, FL, 32816, USA, rav@knights.ucf.edu
  • Department of Mathematics, University of Central Florida, Orlando, FL, 32816, USA
References
  • [1] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, New York, 1960)
  • [2] G.I. Taylor, P. R. Soc. London 233, 446 (1954) http://dx.doi.org/10.1098/rspa.1954.0130[Crossref]
  • [3] P. Shulka, J. Hydraul. Eng.-ASCE 129, 866 (2002)
  • [4] C. Zheng, G.D. Bennett, Applied Contaminant Transport Modelling: Theory and Practices (Van Nostrand Reinhold, New York, 1995)
  • [5] P. Dulal, S. Khan, Int. J. Environ. Stud. 35, 197 (1990) http://dx.doi.org/10.1080/00207239008710565[Crossref]
  • [6] M. Summerfield, W. Krebs, Part. Part. Syst. Char. 7, 16 (1990) http://dx.doi.org/10.1002/ppsc.19900070104[Crossref]
  • [7] J.F. Sini, S. Anquetin, P.G. Mestayer, Atmos. Environ. B-Urb. 30, 2659 (1996) http://dx.doi.org/10.1016/1352-2310(95)00321-5[Crossref]
  • [8] O.D. Makinde, R.J. Moitsheki, B.A. Tau, Appl. Math. Comput. 188, 1267 (2007) http://dx.doi.org/10.1016/j.amc.2006.10.082[Crossref]
  • [9] R.J. Moitsheki, O.D. Makinde, Nonlinear Anal.-Real 10, 3420 (2009) http://dx.doi.org/10.1016/j.nonrwa.2008.09.026[Crossref]
  • [10] T. Chinyoka, O.D. Makinde, Math. Probl. Eng. 2010, 827363 (2010) http://dx.doi.org/10.1155/2010/827363[Crossref]
  • [11] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications Inc., New York, 1992)
  • [12] U. Ascher, R. Mattheij, R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM Classics in Applied Mathematics vol. 13 (Society for Industrial and Applied Mathematics, 1995)
  • [13] U. Ascher, L. Petzold, Computer Methods for Ordinary Differential Equations and differential-Algebraic Equations (SIAM, Philadelphia, 1998) http://dx.doi.org/10.1137/1.9781611971392[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-011-0025-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.