PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 6 | 855-863
Article title

Efficiency of acoustic heating produced in the thermoviscous flow of a fluid with relaxation

Content
Title variants
Languages of publication
EN
Abstracts
EN
Instantaneous acoustic heating of a fluid with thermodynamic relaxation is the subject of investigation. Among others, viscoelastic biological media described by the Maxwell model of the viscous stress tensor, belong to this type of fluid. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in the linear part of the final equation, but preserving terms belonging to the thermal mode responsible for heating. The procedure of decomposition is valid for weakly nonlinear flows, resulting in the nonlinear terms responsible for the modes interaction. Nonlinear acoustic terms form a source of acoustic heating in the case of dominative sound, which reflects the thermoviscous and dispersive properties of a fluid. The method of deriving the governing equations does not need averaging over the sound period, and the final governing dynamic equation of the thermal mode is instantaneous. Some examples of acoustic heating are illustrated and discussed, conclusions about efficiency of heating caused by different sound impulses are made.
Publisher

Journal
Year
Volume
8
Issue
6
Pages
855-863
Physical description
Dates
published
1 - 12 - 2010
online
5 - 9 - 2010
Contributors
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland, anpe@mif.pg.gda.pl
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland, wpelc@mif.pg.gda.pl
References
  • [1] O. V. Rudenko, S. I. Soluyan, Theoretical foundations of nonlinear acoustics (Plenum, New York, 1977)
  • [2] S. Makarov, M. Ochmann, Acustica 82, 579 (1996)
  • [3] O. V. Rudenko, Phys.-Usp+ 50, 359 (2007) http://dx.doi.org/10.1070/PU2007v050n04ABEH006236[Crossref]
  • [4] C. L. Hartman, S. Z. Child et al., J. Acoust. Soc. Am. 91, 513 (1992) http://dx.doi.org/10.1121/1.402740[Crossref]
  • [5] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, Vol.6: Fluid Mechanics, 4th edition (Nauka, Moscow, 1988, Pergamon, NN, 1987)
  • [6] A. Perelomova, Acta Acust. United Ac. 89, 754 (2003)
  • [7] A. Perelomova, Phys. Lett. A 357, 42 (2006) http://dx.doi.org/10.1016/j.physleta.2006.04.014[Crossref]
  • [8] A. Perelomova, Acta Acust. 94(3), 382 (2008) http://dx.doi.org/10.3813/AAA.918045[Crossref]
  • [9] V. N. Alekseev, S. A. Rybak, Acoust. Phys.+ 48, 511 (2002) http://dx.doi.org/10.1134/1.1507191[Crossref]
  • [10] B.-T. Chu, L. S. G. Kovasznay, J. Fluid. Mech. 3, 494 (1958) http://dx.doi.org/10.1017/S0022112058000148[Crossref]
  • [11] B. Riemann, The collected works of Bernard Riemann (Dover, New York, 1953)
  • [12] E. Michel, G. Porte et al., Langmuir 20, 984 (2004) http://dx.doi.org/10.1021/la035678h[Crossref]
  • [13] M. Hamilton, C. Morfey, In: M. Hamilton, D. Blackstock (Eds.), Nonlinear Acoustics (Academic Press, 1998) 41
  • [14] K. H. Herzfeld, T. A. Litovitz, Absorption and dispersion of ultrasonic waves (Academic Press Inc., 1959)
  • [15] D. R. Lide et al., Handbook of Chemistry and Physics, 87th edition (Taylor & Francis Group, Boca Raton, 2007)
  • [16] I. Gajewska, H. Najberg, I. Senderacka, Poradnik fizykochemiczny (Wydawnictwo Naukowo-Techniczne, Warszawa, 1974) (in polish)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-1015-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.