Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 4 | 1090-1095

Article title

On the core width and Peierls stress of bubble rafts dislocations within the framework of modified Peierls-Nabarro model

Content

Title variants

Languages of publication

EN

Abstracts

EN
Using Foreman’s method, the core structure and Peierls stress of dislocations in bubble rafts have been investigated within the framework of the modified Peierls-Nabarro (P-N) model in which the discrete lattice effect is taken into account. The core width obtained from the modified P-N model is much wider than that from the P-N model owing to the discrete lattice effect. It is found that the core width of dislocation increases with a decrease of the bubble radius. The elastic strain energy associated with the discrete effect is considered while calculating the Peierls stress. The new expression of the Peierls stress obtained in this paper is not explicitly dependent on the particular form of the restoring force law, which is only related to the core structure parameter and can be used expediently to predict the Peierls stress of dislocations. The Peierls stress decreases rapidly with the decrease of the bubble radius.

Keywords

Publisher

Journal

Year

Volume

9

Issue

4

Pages

1090-1095

Physical description

Dates

published
1 - 8 - 2011
online
30 - 4 - 2011

Contributors

author
  • Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing, 400044, P. R. China
author
  • Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing, 400044, P. R. China
author
  • Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing, 400044, P. R. China
author
  • Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing, 400044, P. R. China

References

  • [1] W.L. Bragg, J. F. Nye, P. Roy. Soc. Lond. A Mat. 190, 474 (1947) http://dx.doi.org/10.1098/rspa.1947.0089[Crossref]
  • [2] M.J. Bowick, L. Giomi, H. Shin, C.K. Thomas, Phys. Rev. E 77, 021602 (2008) http://dx.doi.org/10.1103/PhysRevE.77.021602[Crossref]
  • [3] S.V. Demitriev, N. Yoshikawa, Y. Shibutani, Philos. Mag. 85, 2177 (2005) http://dx.doi.org/10.1080/14786430412331331862[Crossref]
  • [4] J. Lauridsen, G. Chanan, M. Dennin, Phys. Rev. Lett. 93, 018303 (2004) http://dx.doi.org/10.1103/PhysRevLett.93.018303[Crossref]
  • [5] A.R. Bauschetal., Science 299, 1716 (2003) http://dx.doi.org/10.1126/science.1081160[Crossref]
  • [6] Y. Wang, K. Krishan, M. Dennin, Phys. Rev. E 73, 031401 (2006) http://dx.doi.org/10.1103/PhysRevE.73.031401[Crossref]
  • [7] A.J. Foreman, M.A. Jaswon, J.K. Wood, P. Phys. Soc. Lond. A 64, 156 (1951) http://dx.doi.org/10.1088/0370-1298/64/2/307[Crossref]
  • [8] P.B. Guo et al., Acta. Phys. Sin. -Ch. Ed. 57, 6063 (2008)
  • [9] M.M. Nicolson, P. Camb. Philos. Soc. 45, 288 (1949) http://dx.doi.org/10.1017/S0305004100024841[Crossref]
  • [10] W.L. Bragg, W.M. Lomer, P. Roy. Soc. Lond. A Mat. 196, 171 (1949) http://dx.doi.org/10.1098/rspa.1949.0022[Crossref]
  • [11] W.M. Lomer, P. Roy. Soc. Lond. A Mat. 196, 182 (1949) http://dx.doi.org/10.1098/rspa.1949.0023[Crossref]
  • [12] B. Joós, Q. Ren, M.S. Duesbery, Phys. Rev. B 50, 5890 (1994) http://dx.doi.org/10.1103/PhysRevB.50.5890[Crossref]
  • [13] N.I. Medvedeva, O.N. Mryasov, Y.N. Gornostyrev, D.L. Novikov, A.J. Freeman, Phys. Rev. B 54, 13506 (1996) http://dx.doi.org/10.1103/PhysRevB.54.13506[Crossref]
  • [14] O.N. Mryasov, Y.N. Gornostyrev, A.J. Freeman, Phys. Rev. B 58, 11927 (1998) http://dx.doi.org/10.1103/PhysRevB.58.11927[Crossref]
  • [15] P. Carrez, D. Ferre, P. Cordier, Model. Simul. Mater. Sc. 17, 035010 (2009) http://dx.doi.org/10.1088/0965-0393/17/3/035010[Crossref]
  • [16] Y.P. Pellegrini, Phys. Rev. B 81, 024101 (2010) http://dx.doi.org/10.1103/PhysRevB.81.024101[Crossref]
  • [17] S.F. Wang, Phys. Rev. B 65, 094111 (2002) http://dx.doi.org/10.1103/PhysRevB.65.094111[Crossref]
  • [18] S.F. Wang, Chinese Phys. 14, 791 (2005) http://dx.doi.org/10.1088/1009-1963/14/4/026[Crossref]
  • [19] S.F. Wang, J. Phys. A-Math. Theor. 42, 025208 (2009) http://dx.doi.org/10.1088/1751-8113/42/2/025208[Crossref]
  • [20] X.Z. Wu, S.F. Wang, R.P. Liu, Chinese Phys. B 18, 2905 (2009) http://dx.doi.org/10.1088/1674-1056/18/7/048[Crossref]
  • [21] X.Z. Wu, S.F. Wang, R.P. Liu, Acta Mech. Sinica 26, 425 (2010) http://dx.doi.org/10.1007/s10409-009-0320-0[Crossref]
  • [22] C.W. Zhao, Y.M. Xing, P.C. Bai, Chinese Phys. B 18, 2464 (2009) http://dx.doi.org/10.1088/1674-1056/18/6/057[Crossref]
  • [23] Y.X. Gan, B.Z. Jang, J. Mater. Sci. Lett. 15, 2044 (1996)
  • [24] S. Taketomi, R. Matsumoto, N. Miyazaki, J. Mater. Sci. 43, 1166 (2008) http://dx.doi.org/10.1007/s10853-007-2364-5[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0146-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.