Title variants
Languages of publication
Abstracts
Group field theories whose Feynman diagrams describe 3d gravity with a varying configuration of Wilson loop observables and 3d gravity with volume observables at each vertex are defined. The volume observables are created by the usual spin network grasping operators which require the introduction of vector fields on the group. We then use this to define group field theories that give a previously defined spin foam model for fermion fields coupled to gravity, and the simpler “quenched” approximation, by using tensor fields on the group. The group field theory naturally includes the sum over fermionic loops at each order of the perturbation theory.
Publisher
Journal
Year
Volume
Issue
Pages
1043-1056
Physical description
Dates
published
1 - 8 - 2011
online
30 - 4 - 2011
References
- [1] C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO9780511755804[Crossref]
- [2] D. Oriti, arXiv:gr-qc/0607032 [WoS]
- [3] L. Freidel, Int. J. Theor. Phys. 44, 1769 (2005) http://dx.doi.org/10.1007/s10773-005-8894-1[Crossref]
- [4] L. Freidel, D. Louapre, Classical Quant. Grav. 21, 5685 (2004) http://dx.doi.org/10.1088/0264-9381/21/24/002[Crossref]
- [5] W.J. Fairbairn, A. Perez, Phys. Rev. D 78, 024013 (2008) http://dx.doi.org/10.1103/PhysRevD.78.024013[Crossref]
- [6] L. Freidel, E.R. Livine, Classical Quant. Grav. 23, 2021 (2006) http://dx.doi.org/10.1088/0264-9381/23/6/012[Crossref]
- [7] D. Oriti, J. Ryan, Classical Quant. Grav. 23, 6543 (2006) http://dx.doi.org/10.1088/0264-9381/23/22/027[Crossref]
- [8] W.J. Fairbairn, E.R. Livine, Classical Quant. Grav. 24, 5277 (2007) http://dx.doi.org/10.1088/0264-9381/24/20/021[Crossref]
- [9] W.J. Fairbairn, Gen. Rel. Gravit. 39, 427 (2007) http://dx.doi.org/10.1007/s10714-006-0395-x[Crossref]
- [10] L. Freidel, D. Louapre, arXiv:gr-qc/0410141 [WoS]
- [11] D.V. Boulatov, Mod. Phys. Lett. A 7, 1629 (1992) http://dx.doi.org/10.1142/S0217732392001324[Crossref]
- [12] L. Freidel, K. Krasnov, Adv. Theor. Math. Phys. 2, 1183 (1999)
- [13] J. Hackett, S. Speziale, Classical Quant. Grav. 24, 1525 (2007) http://dx.doi.org/10.1088/0264-9381/24/6/010[Crossref]
- [14] D. Oriti, T. Tlas, Classical Quant. Grav. 25, 085011 (2008) http://dx.doi.org/10.1088/0264-9381/25/8/085011[Crossref]
- [15] R. Gurau, arXiv:0907.2582v1 [hep-th]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0137-2
Identifiers