Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 4 | 898-908

Article title

Effect of cytoskeletal element degradation on merging of concentration waves in slow axonal transport

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this paper is to investigate, by means of a numerical simulation, the effect of the half-life of cytoskeletal elements (CEs) on superposition of several waves representing concentrations of running, pausing, and off-track anterograde and retrograde CE populations. The waves can be induced by simultaneous microinjections of radiolabeled CEs in different locations in the vicinity of a neuron body; alternatively, the waves can be induced by microinjecting CEs at the same location several times, with a time interval between the injections. Since the waves spread out as they propagate downstream, unless their amplitude decreases too fast, they eventually superimpose. As a result of superposition and merging of several waves, for the case with a large half-life of CEs, a single wave is formed. For the case with a small half-life the waves vanish before they have enough time to merge.

Publisher

Journal

Year

Volume

9

Issue

4

Pages

898-908

Physical description

Dates

published
1 - 8 - 2011
online
30 - 4 - 2011

Contributors

  • Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA
  • Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
author
  • Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine

References

  • [1] S. Sasaki, H. Warita, K. Abe, M. Iwata, Acta Neuropathol. 110, 48 (2005) http://dx.doi.org/10.1007/s00401-005-1021-9[Crossref]
  • [2] J.P. Julien, Cell104, 581 (2001) http://dx.doi.org/10.1016/S0092-8674(01)00244-6[Crossref]
  • [3] A. Brown, Nat. Rev. Mol. CellBiol. 1, 153 (2000) http://dx.doi.org/10.1038/35040102[Crossref]
  • [4] R.B. Vallee, G.S. Bloom, Annu. Rev. Neurosci. 14, 59 (1991) http://dx.doi.org/10.1146/annurev.ne.14.030191.000423[Crossref]
  • [5] S. Roy et al., J. Neurosci. 27, 3131 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4999-06.2007[Crossref]
  • [6] A. Brown, L. Wang, P. Jung, Mol. Biol. Cell 16, 4243 (2005) http://dx.doi.org/10.1091/mbc.E05-02-0141[Crossref]
  • [7] G. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005) http://dx.doi.org/10.1016/j.jtbi.2005.04.018[Crossref]
  • [8] N. Trivedi, P. Jung, A. Brown, J. Neurosci. 27, 507 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4227-06.2007[Crossref]
  • [9] Y. He et al., J. CellBiol. 168, 697 (2005) http://dx.doi.org/10.1083/jcb.200407191[Crossref]
  • [10] J.V. Shah, L.A. Flanagan, P.A. Janmey, J.F. Leterrier, Mol. Biol. Cell 11, 3495 (2000) [PubMed]
  • [11] O.I. Wagner et al., Mol. Biol. Cell 15, 5092 (2004) http://dx.doi.org/10.1091/mbc.E04-05-0401[Crossref]
  • [12] J.T. Yabe, A. Pimenta, T.B. Shea, J. Cell Sci. 112, 3799 (1999)
  • [13] C.W. Jung et al., Mol. Brain. Res. 141, 151 (2005) http://dx.doi.org/10.1016/j.molbrainres.2005.08.009[Crossref]
  • [14] J. Niclas, F. Navone, N. Hombooher, R.D. Vale, Neuron 12, 1059 (1994) http://dx.doi.org/10.1016/0896-6273(94)90314-X[Crossref]
  • [15] C.H. Xia, A. Rahman, Z.H. Yang, L.S.B. Goldstein, Genomics 52, 209 (1998) http://dx.doi.org/10.1006/geno.1998.5427[Crossref]
  • [16] F. Navone et al., J. Cell Biol. 117, 1263 (1992) http://dx.doi.org/10.1083/jcb.117.6.1263[Crossref]
  • [17] A. Uchida, N.H. Alami, A. Brown, Mol. Biol. Cell 20, 4997 (2009) http://dx.doi.org/10.1091/mbc.E09-04-0304[Crossref]
  • [18] C.S. Mitchell, R.H. Lee, J. Theor. Biol. 257, 430 (2009) http://dx.doi.org/10.1016/j.jtbi.2008.12.011[Crossref]
  • [19] P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002[Crossref]
  • [20] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, International Journal for Numerical Methods in Biomedical Engineering, DOI:10.1002/cnm.1417 (in press) [Crossref]
  • [21] S. Millecamps et al., J. Neurosci. 27, 4947 (2007) http://dx.doi.org/10.1523/JNEUROSCI.5299-06.2007[Crossref]
  • [22] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Com- mun. Heat Mass Transfer 36, 641 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.04.002[Crossref]
  • [23] A. Yuan et al., J. Neurosci. 29, 11316 (2009) http://dx.doi.org/10.1523/JNEUROSCI.1942-09.2009[Crossref]
  • [24] M.V. Rao et al., J. Cell Biol. 159, 279 (2002) http://dx.doi.org/10.1083/jcb.200205062[Crossref]
  • [25] A. Friedman, B. Hu, Arch. Ration. Mech. Anal. 186, 251 (2007) http://dx.doi.org/10.1007/s00205-007-0069-1[Crossref]
  • [26] J.A. Galbraith, T.S. Reese, M.L. Schlief, P.E. Gallant, Proc. Nat. Acad. Sci. U.S.A. 96, 11589 (1999) http://dx.doi.org/10.1073/pnas.96.20.11589[Crossref]
  • [27] B.P. Graham, K. Lauchlan, D.R. Mclean, J. Comput. Neurosci. 20, 43 (2006) http://dx.doi.org/10.1007/s10827-006-5330-3[Crossref]
  • [28] J. Alvarez, A. Giuditta, E. Koenig, Prog. Neurobiol. 62, 1 (2000) http://dx.doi.org/10.1016/S0301-0082(99)00062-3[Crossref]
  • [29] K.E. Miller, D.C. Samuels, J. Theor. Biol. 186, 373 (1997) http://dx.doi.org/10.1006/jtbi.1996.0355[Crossref]
  • [30] R.A. Nixon, K.B. Logvinenko, J. Cell Biol. 102, 647 (1986) http://dx.doi.org/10.1083/jcb.102.2.647[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0116-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.