PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 4 | 1100-1105
Article title

Flowing liquid crystal simulating the Schwarzschild metric

Content
Title variants
Languages of publication
EN
Abstracts
EN
We show how to simulate the equatorial section of the Schwarzschild metric through a flowing liquid crystal in its nematic phase. Inside a liquid crystal in the nematic phase, a traveling light ray feels an effective metric, whose properties are linked to perpendicular and parallel refractive indexes, n
o and n
e respectively, of the rod-like molecule of the liquid crystal. As these indexes depend on the scalar order parameter of the liquid crystal, the Beris-Edwards hydrodynamic theory is used to connect the order parameter with the velocity of a liquid crystal flow at each point. This way we calculate a radial velocity profile that simulates the equatorial section of the Schwarzschild metric, in the region outside of Schwarzschild’s radius, in the nematic phase of the liquid crystal. In our model, the higher flow velocity can be on the order of some meters per second.
Publisher

Journal
Year
Volume
9
Issue
4
Pages
1100-1105
Physical description
Dates
published
1 - 8 - 2011
online
30 - 4 - 2011
Contributors
author
  • Departamento de Física, CCEN, Universidade Federal da Paraíba, Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
  • Departamento de Física, CCEN, Universidade Federal da Paraíba, Cidade Universitária, 58051-900, João Pessoa, PB, Brazil, moraes@fisica.ufpb.br
References
  • [1] F. Moraes, Braz. J. Phys. 30, 304 (2000) http://dx.doi.org/10.1590/S0103-97332000000200011[Crossref]
  • [2] H. Kleinert, Gauge Fields in Condensed Matter, vol. 2 (World Scientific, Singapore, 1989)
  • [3] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism and Gravitation (World Scientific, Singapore, 2008)
  • [4] W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981) http://dx.doi.org/10.1103/PhysRevLett.46.1351[Crossref]
  • [5] M. Novello, M. Visser, G. Volovik, Artificial Black Holes (World Scientific, New Jersey, 2002) http://dx.doi.org/10.1142/9789812778178[Crossref]
  • [6] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Claredon Press, Oxford, 1993)
  • [7] M. Kleman, O.D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, New York, 2003)
  • [8] M. Kline, I.W. Kay, Electromagnetic theory and geometrical optics (Interscience, New York, 1965)
  • [9] C. Sátiro, F. Moraes, Eur. Phys. J. E 20, 173 (2006) http://dx.doi.org/10.1140/epje/i2005-10127-2[Crossref]
  • [10] C. Sátiro, F. Moraes, Eur. Phys. J. E 25, 425 (2008) http://dx.doi.org/10.1140/epje/i2008-10309-4[Crossref]
  • [11] A.M. de M. Carvalho, C. Sátiro, F. Moraes, Europhys. Lett. 80, 46002 (2007) http://dx.doi.org/10.1209/0295-5075/80/46002[Crossref]
  • [12] A.N. Beris, B.J. Edwards, Thermodynamics of Flowing Systems: with internal microstructure (Oxford University Press, Oxford, 1994)
  • [13] R. D’Inverno, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 1998)
  • [14] M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1980)
  • [15] J. Li, S. Gauza, S-T. Wu, J. Appl. Phys. 96, 19 (2004) http://dx.doi.org/10.1063/1.1757034[Crossref]
  • [16] I. Haller, Prog. Solid State Chem. 10, 103 (1975) http://dx.doi.org/10.1016/0079-6786(75)90008-4[Crossref]
  • [17] C. Denniston, E. Orlandini, J.M. Yeomans, Phys. Rev. E 63, 056702 (2001) http://dx.doi.org/10.1103/PhysRevE.63.056702[Crossref]
  • [18] P.D. Olmsted, C.-Y.D. Lu, Phys. Rev. E 56, R55 (1997) http://dx.doi.org/10.1103/PhysRevE.56.R55[Crossref]
  • [19] H. Cang, J. Li, V.N. Novikov, M.D. Fayer, J. Chem. Phys. 118, 9303 (2003) http://dx.doi.org/10.1063/1.1568338[Crossref]
  • [20] K. Rosquist, Gen. Relativ. Gravitation 36, 1977 (2004) http://dx.doi.org/10.1023/B:GERG.0000036055.82140.06[Crossref]
  • [21] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973)
  • [22] P. Poulin, V. Cabuil, D.A. Weitz, Phys. Rev. Lett. 79, 4862 (1997) http://dx.doi.org/10.1103/PhysRevLett.79.4862[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0109-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.