Preferences help
enabled [disable] Abstract
Number of results
2011 | 9 | 2 | 472-481
Article title

3D quantum mechanical simulation of square nanowire MOSFETs by using NEGF method

Title variants
Languages of publication
In order to investigate the specifications of nanoscale transistors, we have used a three dimensional (3D) quantum mechanical approach to simulate square cross section silicon nanowire (SNW) MOSFETs. A three dimensional simulation of silicon nanowire MOSFET based on self consistent solution of Poisson-Schrödinger equations is implemented. The quantum mechanical transport model of this work uses the non-equilibrium Green’s function (NEGF) formalism. First, we simulate a double-gate (DG) silicon nanowire MOSFET and compare the results with those obtained from nanoMOS simulation. We understand that when the transverse dimension of a DG nanowire is reduced to a few nanometers, quantum confinement in that direction becomes important and 3D Schrödinger equation must be solved. Second, we simulate gate-all-around (GAA) silicon nanowire MOSFETs with different shapes of gate. We have investigated GAA-SNW-MOSFET with an octagonal gate around the wire and found out it is more suitable than a conventional GAA MOSFET for its more I
off, less Drain-Induced-Barrier-Lowering (DIBL) and less subthreshold slope.
Physical description
1 - 4 - 2011
20 - 2 - 2011
  • [1] J. Wang, E. Polizzi, M. Lundstrom, In: M. Foisy (Ed.), IEEE International Electron Devices Meeting, 8–10 Dec. 2003, Washington DC, USA (IEEE, University of Louisiana, 2003) 695
  • [2] M. Pakkhesal, R. Ghayour, Cent. Eur. J. Phys. 6, 4 (2008)[Crossref]
  • [3] J. Wang, PhD thesis, Purdue University (West Lafayette, USA, 2005)
  • [4] S. Datta, Quantum Transport, Atom to Transistor (Cambridge University Press, UK, 2005)
  • [5] O. Kurniawan, P. Bai, E. Li, J. Phys. D: Appl. Phys. 42, 105109 (2009)[Crossref]
  • [6] A. L. Miguel et al., Time-dependent density functional theory (Springer Verlag, Berlin, Heidelberg, 2006)
  • [7] M. Luisier, A. Schenk, W. Fichtner, In: K. Mistry (Ed.), IEEE International Electron Devices Meeting, 11–13 Dec. 2006, San Francisco, CA, USA (IEEE, CA, 2006) 1
  • [8] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, M. Lundstrom, IEEE Trans. Electron Devices 52, 1589 (2005)[Crossref]
  • [9] M. Shin, Math. Comput. Simul. 79, 1060 (2008)[Crossref]
  • [10] M. Luisier, A. Schenk, W. Fichtner, J. Appl. Phys. 100, 043713 (2006)[Crossref]
  • [11] M. Shin, J. Appl. Phys. 101, 024510 (2007)[Crossref]
  • [12] M. Bescond et al., In: J. Welser (Ed.), IEEE Inter- national Electron Devices Meeting, 13–15 Dec. 2004, SanFrancisco, CA, USA (IEEE, CA, 2004) 617
  • [13] J. Wang, E. Polizzi, M. Landstrom, J. Appl. Phys. 96, 2192 (2004)[Crossref]
  • [14] S. R. Mehrotra, K. P. Roenker, In: N. Ramaswamy (Ed.), Microelectronics and Electron Devices, 20Apr. 2007, Boise, ID, USA (IEEE, ID, 2007) 40[Crossref]
  • [15] M. Shin, IEEE Trans. Electron Devices 55, 737 (2008)[Crossref]
  • [16] J. Wang, E. Polizzi, A. Ghosh, S. Datta, M. Lundstrom, Appl. Phys. Lett. 87, 043101 (2005)[Crossref]
  • [17] Z. Ren, R. Venugopal, S. Goasguen, S. Datta, M. Lundstrom, IEEE Trans. Electron Devices 50, 1914 (2003)[Crossref]
  • [18] R. Kim, M. Lundstrom, arXiv:0811. 0116v3 [WoS]
  • [19] E. Gnani, S. Reggiani, M. Rudan, G. Baccarani, IEEE Trans. Nanotechnol. 6, 90 (2007)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.