PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 2 | 265-275
Article title

Top down nano technologies in surface modification of materials

Content
Title variants
Languages of publication
EN
Abstracts
EN
This article contains a broad overview of etch process as one of the most important top-down technologies widely used in semiconductor manufacturing and surface modification of nanostructures. In plasma etching process, the complexity comes from the introduction of new materials and from the constant reduction in dimensions of the structures in microelectronics. The emphasis was made on two types of etching processes: dry etching and wet etching illustrated by three dimensional (3D) simulation results for the etching profile evolution based on the level set method. The etching of low-k dielectrics has been demonstrated via modelling the porous materials. Finally, simulation results for the roughness formation during isotropic etching of nanocomposite materials as well as smoothing of the homogeneous materials have also been shown and analyzed. Simulation results, presented here, indicate that with shrinking microelectronic devices, plasma and wet etching interpretative and predictive modeling and simulation have become increasingly more attractive as a tool for design, control and optimization of plasma reactors.
Publisher

Journal
Year
Volume
9
Issue
2
Pages
265-275
Physical description
Dates
published
1 - 4 - 2011
online
20 - 2 - 2011
Contributors
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080, Zemun, Serbia, bradjeno@ipb.ac.rs
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080, Zemun, Serbia, marija@ipb.ac.rs
References
  • [1] S.M. Rossnagel, J.J. Cuomo, W.D. Westwood, Handbook of Plasma Processing Technology (Noyes, Park Ridge, NJ, 1990)
  • [2] J. Uldrich, Investing In Nanotechnology: Think Small. Win Big (Barnes & Noble, New York, NY, 2006)
  • [3] K.F. Schmidt, Nanofrontiers: Visions for the Future of Nanotechnology (Woodrow Wilson International Center for Sholars, Pennsylvania Avenue, NW, 2007)
  • [4] J.M. Torres, R.S. Dhariwal, Nanotechnology 10, 102 (1999) http://dx.doi.org/10.1088/0957-4484/10/1/020[Crossref]
  • [5] A. Kasuya et al., Nat. Mater. 3, 99 (2004) http://dx.doi.org/10.1038/nmat1056[Crossref]
  • [6] A. Al-Mahboob, J.T. Sadowski, Y. Fujikawa, K. Nakajima, T. Sakurai, Phys. Rev. B 77, 035426 (2008) http://dx.doi.org/10.1103/PhysRevB.77.035426[Crossref]
  • [7] M. Krummenacker, J. Lewis, Prospects in Nanotechnology: Towards Molecular Manufacturing (Wiley and Sons, New York, 1995)
  • [8] N.C. Seeman, Curr. Opin. Struct. Biol. 6, 519 (1996) http://dx.doi.org/10.1016/S0959-440X(96)80118-7[Crossref]
  • [9] T. Junno, S.B. Carlsson, Hongqi Xu, L. Montelius, L. Samuelson, Appl. Phys. Lett. 72, 548 (1998) http://dx.doi.org/10.1063/1.120754[Crossref]
  • [10] E. Ben-Jacob, Z. Herman, S. Caspi, Phys. Lett. A 263, 199 (1999) http://dx.doi.org/10.1016/S0375-9601(99)00734-3[Crossref]
  • [11] J. Corbetta, P.A. McKeowna, G.N. Peggsb, R. Whatmore, CIRP Ann.-Manuf. Techn. 49, 523 (2000) http://dx.doi.org/10.1016/S0007-8506(07)63454-4[Crossref]
  • [12] A.G. Mamalis, J. Mater. Process. Technol. 181, 52 (2007) http://dx.doi.org/10.1016/j.jmatprotec.2006.03.052[Crossref]
  • [13] Z. Petrović et al., J. Optoelectron. Adv. Mater. 11, 1163 (2009)
  • [14] D. Mijatović, J.C.T. Eijkel, A. van de Berg, Lab Chip 5, 492 (2005) http://dx.doi.org/10.1039/b416951d[Crossref]
  • [15] C. Cardinaud, M.C. Peignon, P.Y. Tessier, Appl. Surf. Sci. 164, 72 (2000) http://dx.doi.org/10.1016/S0169-4332(00)00328-7[Crossref]
  • [16] H. Enami, M. Sagakuchi, N. Itabashi, M. Izawa, Industrial Systems 56, 57 (2007)
  • [17] J.P. Chang, J.B. Coburn, J. Vac. Sci. Technol. A 21, 145 (2003) http://dx.doi.org/10.1116/1.1600452[Crossref]
  • [18] J. Matsui, K. Maeshige, T. Makabe, J. Phys. D: Appl. Phys. 34, 2950 (2001) http://dx.doi.org/10.1088/0022-3727/34/19/304[Crossref]
  • [19] I. Brodie, J.J. Muray, The Physics of Micro/Nano-Fabrication Series: Microdevices (Springer, Berlin, 1993)
  • [20] S. Hamaguchi, Modeling of Film Deposition for Microelectronic Applications in Thin Films (Academic Press, Inc., San Diego, 1996)
  • [21] R.J. Hoekstra, M.J. Kushner, J. Vac. Sci. Technol. A 16, 3274 (1998) http://dx.doi.org/10.1116/1.581533[Crossref]
  • [22] D.J. Economou, Thin Solid Films 365, 348 (2000) http://dx.doi.org/10.1016/S0040-6090(99)01056-1[Crossref]
  • [23] D. Christopher, R. Smith, A. Richter, Nanotechnology 12, 372 (2001) http://dx.doi.org/10.1088/0957-4484/12/3/328[Crossref]
  • [24] P.L.G. Ventzek et al., Appl. Surf. Sci. 192, 201 (2002) http://dx.doi.org/10.1016/S0169-4332(02)00027-2[Crossref]
  • [25] H.S. Park, S.J. Kim, Y.Q. Wu, J.K. Lee, IEEE Trans. Plasma Sci. 31, 703 (2003) http://dx.doi.org/10.1109/TPS.2003.815245[Crossref]
  • [26] B. Radjenović, M. Radmilović-Radjenović, M. Mitrić, Appl. Phys. Lett. 89, 213102 (2006) http://dx.doi.org/10.1063/1.2388860[Crossref]
  • [27] B. Radjenović, J.K. Lee, M. Radmilović-Radjenović, Comput. Phys. Commun. 174, 127 (2006) http://dx.doi.org/10.1016/j.cpc.2005.09.010[Crossref]
  • [28] B. Radjenović, M. Radmilović-Radjenović, J. Phys. Conf. Ser. 86, 012017 (2007) http://dx.doi.org/10.1088/1742-6596/86/1/012017[Crossref]
  • [29] J. Sethian, Level Set Methods and Fast arching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences (Cambridge University Press, Cambridge, UK, 1998)
  • [30] S. Osher, R. Fedkiw, Level Set Method and Dynamic Implicit Surfaces (Springer-Verlag, New York, NY, 2003)
  • [31] V. Vahedi, M. Surendra, Comput. Phys. Commun. 87, 179 (1995) http://dx.doi.org/10.1016/0010-4655(94)00171-W[Crossref]
  • [32] B. Radjenović, M. Radmilović-Radjenović, Finite elements (WSEAS Press, Athens, Greece, 2007) 128
  • [33] C.K. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (1991) http://dx.doi.org/10.1109/27.106800[Crossref]
  • [34] J.P. Verboncoeur, M.V. Alves, V. Vahedi, C.K. Birdsall, J. Comput. Phys. 104, 321 (1993) http://dx.doi.org/10.1006/jcph.1993.1034[Crossref]
  • [35] M. Radmilović-Radjenović, J.K. Lee, F. Iza, G.Y. Park, J. Phys. D: Appl. Phys. 38, 950 (2005) http://dx.doi.org/10.1088/0022-3727/38/6/027[Crossref]
  • [36] H.C. Kim, F. Iza, S.S. Yang, M. Radmilović-Radjenović, J.K. Lee, J. Phys. D: Appl. Phys. 38, R283 (2005) http://dx.doi.org/10.1088/0022-3727/38/19/R01[Crossref]
  • [37] B. Radjenović, M. Radmilović-Radjenović, Z.Lj. Petrović, IEEE Trans. Plasma Sci. 36, 874 (2008) http://dx.doi.org/10.1109/TPS.2008.920886[Crossref]
  • [38] B. Radjenović, M. Radmilović-Radjenović, M. Mitrić, Sensors 10, 4950 (2010) http://dx.doi.org/10.3390/s100504950[Crossref]
  • [39] R. Whitaker, Int. J. Comput. Vision 29, 203 (1998) http://dx.doi.org/10.1023/A:1008036829907[Crossref]
  • [40] L. Ibanez, W. Schroeder, L. Ng, J. Cates, ITK Software Guide (Kitware Inc., New York, 2005)
  • [41] L. Evans, Partial Differential Equations (Americam Mathematical Society, Providence, 1998)
  • [42] D.B. Graves, D. Humbrid, Appl. Surf. Sci. 192, 88 (2002) http://dx.doi.org/10.1016/S0169-4332(02)00021-1[Crossref]
  • [43] H. Abe, Y. Sonobe, T. Enomoto, Jpn. J. Appl. Phys. 12, 154 (1973) http://dx.doi.org/10.1143/JJAP.12.154[Crossref]
  • [44] L.M. Loewenstein, C.M. Tipton, J. Electrochem. Soc. 138, 1389 (1991) http://dx.doi.org/10.1149/1.2085792[Crossref]
  • [45] S.J. Fonash, J. Electrochem. Soc. 137, 3885 (1990) http://dx.doi.org/10.1149/1.2086322[Crossref]
  • [46] Y. Yoshida, T. Watanabe, Proceedings of the 5th Symposium on Dry Processing, 19–20 September, 1983, Tokyo, Japan (Inst. Electr. Eng., Tokyo, 1983) 4
  • [47] K. Hashimoto, Jpn. J. Appl. Phys. 33, 6013 (1994) http://dx.doi.org/10.1143/JJAP.33.6013[Crossref]
  • [48] G. Hwang, K. Giapis, J. Vac. Sci. Technol. B 15, 70 (1997) http://dx.doi.org/10.1116/1.589258[Crossref]
  • [49] J.C. Arnold, H.H. Sawin, J. Appl. Phys. 70, 5314 (1991) http://dx.doi.org/10.1063/1.350241[Crossref]
  • [50] T. Kinoshita, M. Hane, J.P. McVittie, J. Vac. Sci. Technol. B 14, 560 (1996) http://dx.doi.org/10.1116/1.588431[Crossref]
  • [51] U. Kortshagen, J. Vac. Sci. Technol. A 16, 300 (1998) http://dx.doi.org/10.1116/1.580986[Crossref]
  • [52] S. Fang, J.P. McVittie, IEEE T. Electron. Dev. 41, 1848 (1994) http://dx.doi.org/10.1109/16.324598[Crossref]
  • [53] K.P. Cheung, C.S. Pei, IEEE Electr. Device L. 16, 220 (1995) http://dx.doi.org/10.1109/55.790714[Crossref]
  • [54] G.S. Hwang, K.P. Giapis, Appl. Phys. Lett. 71, 2928 (1997) http://dx.doi.org/10.1063/1.120218[Crossref]
  • [55] H.C. Lin et al., IEEE Electr. Device L. 19, 68 (1998) http://dx.doi.org/10.1109/55.661167[Crossref]
  • [56] J. Matsui, N. Nakano, Z.Lj. Petrović, T. Makabe, Appl. Phys. Lett. 78, 883 (2001) http://dx.doi.org/10.1063/1.1347021[Crossref]
  • [57] R. Gottscho, C.W. Jurgensen, D.J. Vitkavage, J. Vac. Sci. Technol. B 10, 2133 (1992) http://dx.doi.org/10.1116/1.586180[Crossref]
  • [58] E.W. Beckera, W. Ehrfeldb, P. Hagmannc, A. Manerd, D. Münchmeyer, Microelectron. Eng. 4, 35 (1986) http://dx.doi.org/10.1016/0167-9317(86)90004-3[Crossref]
  • [59] M. Armacost et al., IBM J. Res. Dev. 43, 39 (1999) http://dx.doi.org/10.1147/rd.431.0039[Crossref]
  • [60] B. Radjenović, M. Radmilović-Radjenović, Thin Solid Films 517, 4233 (2009) http://dx.doi.org/10.1016/j.tsf.2009.02.007[Crossref]
  • [61] M. Radmilović-Radjenović, B. Radjenović, Z.Lj. Petrović, Thin Solid Films 517, 3954 (2009) http://dx.doi.org/10.1016/j.tsf.2009.01.123[Crossref]
  • [62] A. Roya, K. Bhattacharjeea, H.P. Lenkaa, D.P. Mahapatraa, B.N. Dev, Nucl. Instrum. Methods Phys. Res. B 266, 1276 (2008) http://dx.doi.org/10.1016/j.nimb.2007.10.045[Crossref]
  • [63] M. Miyauchi, Y. Miyoshi, Z.Lj. Petrovć, T. Makabe, Solid State Electron. 51, 1418 (2007) http://dx.doi.org/10.1016/j.sse.2007.08.012[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0096-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.