Preferences help
enabled [disable] Abstract
Number of results
2011 | 9 | 2 | 492-501
Article title

Symmetry and models of single-walled TiO2 nanotubes with rectangular morphology

Title variants
Languages of publication
The formalism of line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry has been applied for symmetry analysis of single-walled titania nanotubes (SW TiO2 NTs) formed by rolling up the stoichiometric two-periodic (2D) slabs of anatase structure. Either six- or twelve-layer (101) slabs have been cut from TiO2 crystal in a stable anatase phase. After structural optimization, the latter keeps the centered rectangular symmetry of initial slab slightly compressed along a direction coincided with large sides of elemental rectangles. We have considered two sets of SW TiO2 NTs with optimized six- and twelve-layer structures, which possess chiralities (−n, n) and (n, n) of anatase nanotubes. To analyze the structural and electronic properties of titania slabs and nanotubes, we have performed their ab initio LCAO calculations, using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0. The band gaps (Δɛ
gap) and strain energies (E
strain) of six-layer nanotubes have been computed and analyzed as functions of NT diameter (D
NT). As to models of 12-layer SW TiO2 NTs of both chiralities, their optimization results in structural exfoliation, i.e., the multi-walled structure should be rather formed in nanotubes with such a number of atomic layers.
Physical description
1 - 4 - 2011
20 - 2 - 2011
  • Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Avenue, Petrodvorets, 198504, Russia
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga, LV-1063, Latvia
  • Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Avenue, Petrodvorets, 198504, Russia
  • [1] U. Diebold, Surf. Sci. Rep. 48, 53 (2003)[Crossref]
  • [2] J. Muscat, V. Swamy, N.M. Harrison, Phys. Rev. B 65, 224112 (2002)[Crossref]
  • [3] W. Wang, O.K. Varghese, M. Paulose, C.A. Grimes, J. Mater. Res. 19, 417 (2004)[Crossref]
  • [4] J. Zhao, X. Wang, T. Sun, L. Li, Nanotechnology 16, 2450 (2005)[Crossref]
  • [5] T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Bull. Mater. Sci. 29, 705 (2006)
  • [6] D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18, 2807 (2006)[Crossref]
  • [7] N. Viriya-empikul, N. Sano, T. Charinpanitkul, T. Kikuchi, W. Tanthapanichakoon, Nanotechnology 19, 035601 (2008)[Crossref]
  • [8] G. Mogilevsky, Q. Chen, A. Kleinhammes, Y. Wu, Chem. Phys. Lett. 460, 517 (2008)[Crossref]
  • [9] R. Tenne, G. Seifert, Ann. Rev. Mater. Res. 39, 387 (2009)[Crossref]
  • [10] S. Zhang et al., Phys. Rev. Lett. 91, 256103 (2003)[Crossref]
  • [11] R. Ma, Y. Bando, T. Sasaki, Chem. Phys. Lett. 380, 577 (2003)[Crossref]
  • [12] Y.Q. Wang, C.G. Hu, X.F. Duan, H.L Sun, Q.K. Hue, Chem. Phys. Lett. 365, 427 (2002)[Crossref]
  • [13] W. Hebenstreit, N. Ruzycki, G.S. Herman, Y. Gao, U. Diebold, Phys. Rev. B 62, R16334 (2000)[Crossref]
  • [14] Z. Liu, Q. Zhang, L.C. Qin, Solid State Commun. 141, 168 (2007)[Crossref]
  • [15] F. Lin et al., Chem. Phys. Lett. 475, 82 (2009)[Crossref]
  • [16] A.V. Bandura, R.A. Evarestov, Surf. Sci. 603, L117 (2009)[Crossref]
  • [17] A.N. Enyashin, G. Seifert, Phys. Status Solidi B 242, 1361 (2005)[Crossref]
  • [18] A.N. Enyashin, A.L. Ivanovskii, J. Mol. Struct.: THEOCHEM 766, 15 (2006)[Crossref]
  • [19] J. Wang et al., Physica E 41, 838 (2009)[Crossref]
  • [20] D.J. Mowbray, J.I. Martinez, J.M. García Lastra, K.S. Thygesen, K.W. Jacobsen, J. Phys. Chem. C 113, 12301 (2009)[Crossref]
  • [21] T. He et al., J. Phys. Chem. C 113, 13610 (2009)[Crossref]
  • [22] F. Alvarez-Ramirez, Y. Ruiz-Morales, Chem. Mater. 19,2947 (2007)[Crossref]
  • [23] A. Vittadini, M. Casarin, Theor. Chem. Acc. 120, 551 (2008)[Crossref]
  • [24] D. Szieberth, A.M. Ferrari, Y. Noel, M. Ferrabone, Nanoscale 2, 81 (2010)[Crossref]
  • [25] M. Vujičić, J. Phys. A: Math. Gen. 10, 1271 (1977)[Crossref]
  • [26] M. Damnjanović, I. Milošević, Line Groups in Physics: Theory and Applications to Nanotubes and Polymers, Lecture Notes in Physics, Vol. 801 (Springer Verlag, Berlin, Heidelberg, 2010)
  • [27] M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)[Crossref]
  • [28] C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)[Crossref]
  • [29] M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross, W.C. Ermler, J. Chem. Phys. 84, 6840 (1986)[Crossref]
  • [30] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994)[Crossref]
  • [31] R.A. Evarestov, Quantum Chemistry of Solids. The LCAO First Principles Treatment of Crystals, Springer Series in Solid State Sciences, Vol. 153 (Springer Verlag, Berlin, 2007)
  • [32] B.D. Bunday, Basic Optimization Methods (Edward Arnold Ltd., London, 1984)
  • [33] R.A. Evarestov, A.I. Panin, A.V. Bandura, M.V. Losev, J. Phys. Conf. Ser. 117, 012015 (2008)[Crossref]
  • [34] W.H. Press, S.A. Teukolski, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Vol. 1, 3rd Ed. (Cambridge University Press, New York, 2007)
  • [35] F. Labat, P. Baranek, C. Domain, C. Minot, C. Adamo, J. Chem. Phys. 126, 154703 (2007)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.