PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 3 | 775-791
Article title

Quantum processes in 8-Oxo-Guanine-Ru(bipyridine)32+ photosynthetic systems of artificial minimal cells

Content
Title variants
Languages of publication
EN
Abstracts
EN
Density functional theory methods were used to investigate various self-assembled photoactive bioorganic systems of interest for artificial minimal cells. The cell systems studied are based on nucleotides or their compounds and consisted of up to 123 atoms (not including the associated water or methanol solvent shells) and are up to 2.5 nm in diameter. The electron correlation interactions responsible for the weak hydrogen and Van derWaals chemical bonds increase due to the addition of a polar solvent (water or methanol). The precursor fatty acid molecules of the system also play a critical role in the quantum mechanical interaction based self-assembly of the photosynthetic center and the functioning of the photosynthetic processes of the artificial minimal cells. The distances between the separated sensitizer, fatty acid precursor, and methanol molecules are comparable to Van derWaals and hydrogen bonding radii. As a result the associated electron correlation interactions compress the overall system, resulting in an even smaller gap between the highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) electron energy levels and photoexcited electron tunnelling occurs from the sensitizer (either Ru(bpy)32+ or [Ru(bpy)2(4-Bu-4’-Me-2,2’-bpy)]2++ derivatives) to the precursor fatty acid molecules (notation used: Me = methyl; Bu = butyl; bpy = bipyridine). The shift of the absorption spectrum to the red for the artificial protocell photosynthetic centers might be considered as the measure of the complexity of these systems.
Publisher
Journal
Year
Volume
9
Issue
3
Pages
775-791
Physical description
Dates
published
1 - 6 - 2011
online
26 - 2 - 2011
References
  • [1] S. Rasmussen, L. Chen, M. Nilsson, S. Abe, Artif. Life 9, 267 (2003)
  • [2] S. Rasmussen et al., In: S. Rasmussen et al. (Ed.), Bridging nonliving and living matter (MIT Press, Cambridge, Massachusetts, London, England, 2009) 125
  • [3] M. S. DeClue et al., J. Am. Chem. Soc. 131, 931 (2009) http://dx.doi.org/10.1021/ja808200n[Crossref]
  • [4] A. Tamulis, V. Tamulis, A. Graja, J. Nanosci. Nanotechno. 6, 965 (2006) http://dx.doi.org/10.1166/jnn.2006.168[Crossref]
  • [5] A. Tamulis, V. Tamulis, H. Ziock, S. Rasmussen, In: R. Ross, S. Mohanty (Eds.), Multiscale Simulation Methods for Nanomaterials (John Wiley & Sons, Inc., New Jersey, 2008) 9
  • [6] A. Tamulis, V. Tamulis, Origins Life Evol. B. 37, 473 (2007) http://dx.doi.org/10.1007/s11084-007-9078-1[Crossref]
  • [7] A. Tamulis, M. Grigalavicius, J. Comput. Theor. Nanos. 7, 1831 (2010) http://dx.doi.org/10.1166/jctn.2010.1548[Crossref]
  • [8] A. Tamulis, M. Grigalavicius, Origins Life Evol. B., DOI:10.1007/s11084-010-9211-4 [Crossref]
  • [9] A. Tamulis, J. Tamuliene, V. Tamulis, In: H.S. Nalwa (Ed.), Handbook of Photochemistry and Photobiology (American Scientific Publishers, USA, 2003) 495
  • [10] A. Tamulis, J. Tamuliene, V. Tamulis, A. Ziriakoviene, Sol. St. Phen. 97–98, 175 (2004)
  • [11] J. Tamuliene, A. Tamulis, J. Kulys, Nonlinear Anal. Modell. Control 9, 185 (2004)
  • [12] Z. Rinkevicius, A. Tamulis, J. Tamuliene, Lith. J. Phys. 46, 413 (2006) http://dx.doi.org/10.3952/lithjphys.46402[Crossref]
  • [13] A. Tamulis, V. Tamulis, J. Comput. Theor. Nanos. 4, 5 (2007)
  • [14] M.J. Frisch et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)
  • [15] M.W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993) http://dx.doi.org/10.1002/jcc.540141112[Crossref]
  • [16] F. Neese, J. Chem. Phys. 119, 9428 (2003) http://dx.doi.org/10.1063/1.1615956[Crossref]
  • [17] D.B. Cook, Handbook of Computational Quantum Chemistry (Oxford University Press, New York, 1998)
  • [18] R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990)
  • [19] A.D. Becke, Phys. Rev. A 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.3098[Crossref]
  • [20] C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785[Crossref]
  • [21] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3865[Crossref]
  • [22] M. Springborg, Density-Functional Methods in Chemistry and Materials Science (John Wiley & Sons, Chichester-Toronto, 1997)
  • [23] F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons, Chichester-Toronto, 1999)
  • [24] K.L. Schuchardt et al., J. Chem. Inf. Model. 47, 1045 (2007) http://dx.doi.org/10.1021/ci600510j[Crossref]
  • [25] F. Felix, J. Ferguson, H.U. Giidel, A. Ludi, J. Am. Chem. Soc. 102, 4096 (1980) http://dx.doi.org/10.1021/ja00532a019[Crossref]
  • [26] D.H. Oh, S.G. Boxer, J. Am. Chem. Soc. 111, 1131 (1989) http://dx.doi.org/10.1021/ja00185a055[Crossref]
  • [27] A.K. Campen, A.J. Rest, K. Yoshihara, J. Photoch. Photobio. A 55, 301 (1991) http://dx.doi.org/10.1016/1010-6030(91)87032-Q[Crossref]
  • [28] P. Innocenzi, H. Kozuka, T. Yoko, J. Phys. Chem. B 101, 2285 (1997) http://dx.doi.org/10.1021/jp970004z[Crossref]
  • [29] S. Wallin, J. Davidsson, J. Modin, L. Hammarström, J. Phys. Chem. A 109, 4697 (2005) http://dx.doi.org/10.1021/jp0509212[Crossref]
  • [30] E. Cances, B. Mennucci, J. Chem. Phys. 114, 4744 (2001) http://dx.doi.org/10.1063/1.1349091[Crossref]
  • [31] A. Schäfer, A. Klamt, D. Sattel, J.C.W. Lohrenz, F. Eckert, Phys. Chem. Chem. Phys. 2, 2187 (2000) http://dx.doi.org/10.1039/b000184h[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0092-y
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.