Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 2 | 519-529

Article title

Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates

Content

Title variants

Languages of publication

EN

Abstracts

EN
This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have been performed using the multiple scattering theory and the effective media cluster approach. Two models for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b) semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as an indicator of possible ‘radial current’ losses.

Publisher

Journal

Year

Volume

9

Issue

2

Pages

519-529

Physical description

Dates

published
1 - 4 - 2011
online
20 - 2 - 2011

Contributors

author
  • Institute of Solid State Physics, University of Latvia, Riga, Latvia
  • Information Systems Management Institute, Riga, Latvia
  • INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi 40, Frascati, Italy

References

  • [1] M. Ahlskog, Ch. Laurent, M. Baxendale, M. Huhtala, In: H. S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, Vol. 3 (American Sci. Publishers, Valencia, CA, 2004) 139
  • [2] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)
  • [3] S.J. Tans, R.M. Verschueren, C. Dekker, Nature 393, 49 (1998) http://dx.doi.org/10.1038/29954[Crossref]
  • [4] J. Tersoff, Appl. Phys. Lett. 74, 2122 (1999) http://dx.doi.org/10.1063/1.123776[Crossref]
  • [5] Yu.N. Shunin, K.K. Schwartz, In: R.C. Tennyson, A.E. Kiv (Eds.), Computer Modelling of Electronic and Atomic Processes in Solids (Kluwer Acad. Publisher, Dodrecht, Boston, London, 1997) 241
  • [6] Yu.N. Shunin, DSc Habil. thesis, University of Latvia (Riga-Salaspils, Latvia, 1991)
  • [7] E.L. Economou, Green’s Functions in Quantum Physics, 3rd edition, Solid State Ser. Vol. 7 (Springer Verlag, Berlin, Heidelberg, 2006)
  • [8] J.M. Ziman, Models of Disorder (Cambridge Univ. Press, London, New York, 1979)
  • [9] R. Gaspar, Acta Phys. Acad. Sci. Hung. 2, 15 (1952)
  • [10] R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954) http://dx.doi.org/10.1007/BF03156228[Crossref]
  • [11] J.C. Slater, The Self-Consistent Field for Molecules and Solids, Vol. 4 (McGraw-Hill Book Company, New York, 1974)
  • [12] H. Ehrenreich, L. Schwartz, The Electronic Structure of Alloys, Solid State Phys. Vol. 31 (Academic Press, New York, San Francisco, London, 1976)
  • [13] M.F. Lin, K.W.-K. Shung, Phys. Rev. B 47, 6617 (1993) http://dx.doi.org/10.1103/PhysRevB.47.6617[Crossref]
  • [14] G. Gumbs, G.R. Aizin, Phys. Rev. B 65, 195407 (2002) http://dx.doi.org/10.1103/PhysRevB.65.195407[Crossref]
  • [15] G. Gumbs, A. Balassis, Phys. Rev. B 71, 235410 (2005) http://dx.doi.org/10.1103/PhysRevB.71.235410[Crossref]
  • [16] Yu.N. Shunin, Yu.F. Zhukovskii, S. Bellucci, Computer Modellingand New Technologies 12(2), 66 (2008)
  • [17] P. Soven, Phys. Rev. 156, 809 (1967) http://dx.doi.org/10.1103/PhysRev.156.809[Crossref]
  • [18] D. Stone, A. Szafer, IBMJ. Res. Dev. 32, 384 (1988) http://dx.doi.org/10.1147/rd.323.0384[Crossref]
  • [19] F. Ding et al., Nano Lett. 8, 463 (2008) http://dx.doi.org/10.1021/nl072431m[Crossref]
  • [20] Yu.N. Shunin, In: H. Dosch, M.H. Van de Voorde (Eds.), GENNESYS White Paper (Max-Planck-Institutfür Metallforschung, Stuttgart, 2009) 8
  • [21] S. Uryu, Phys. Rev. B 69, 075402 (2004) http://dx.doi.org/10.1103/PhysRevB.69.075402[Crossref]
  • [22] A.M. Lunde, K. Flensberg, A.-P. Jauho, Phys. Rev. B 71, 125408 (2005) http://dx.doi.org/10.1103/PhysRevB.71.125408[Crossref]
  • [23] Z. Kordrostami, M.H. Sheikhi, R. Mohammadzadegan, Fuller. Nanotub. Car. N. 16, 66 (2008) http://dx.doi.org/10.1080/15363830701783713[Crossref]
  • [24] J.-O. Lee, J. Phys. D: Appl. Phys. 33, 1953 (2000) http://dx.doi.org/10.1088/0022-3727/33/16/303[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0086-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.