PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 2 | 325-329
Article title

Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

Content
Title variants
Languages of publication
EN
Abstracts
EN
This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).
Keywords
Publisher

Journal
Year
Volume
9
Issue
2
Pages
325-329
Physical description
Dates
published
1 - 4 - 2011
online
20 - 2 - 2011
Contributors
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322, Szczecin, Poland
author
  • Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322, Szczecin, Poland, eborowiak@zut.edu.pl
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10, 70-322, Szczecin, Poland
References
  • [1] Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 13187 (2008) http://dx.doi.org/10.1021/jp804006f[Crossref]
  • [2] W. Wang et al., J. Am. Chem. Soc. 130, 1415 (2008) http://dx.doi.org/10.1021/ja0768035[Crossref]
  • [3] D. Chattopadhyay, I. Galeska, F. Papadimiytrakopoulos, J. Am. Chem. Soc. 125, 3370 (2003) http://dx.doi.org/10.1021/ja028599l[Crossref]
  • [4] M.S. Strano et al., Science 301, 1519 (2003) http://dx.doi.org/10.1126/science.1087691[Crossref]
  • [5] Y. Maeda et al., J. Am. Chem. Soc. 127, 10287 (2005) http://dx.doi.org/10.1021/ja051774o[Crossref]
  • [6] S. Campidelli, M. Menegheti, M. Prato, Small 3, 1672 (2007) http://dx.doi.org/10.1002/smll.200700394[Crossref]
  • [7] Y. Maeda et al., Carbon 46, 1563 (2008) http://dx.doi.org/10.1016/j.carbon.2008.06.057[Crossref]
  • [8] Y. Miyata et al., J. Phys. Chem. 110, 25 (2006) http://dx.doi.org/10.1021/jp055692y[Crossref]
  • [9] M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60 (2006) http://dx.doi.org/10.1038/nnano.2006.52[Crossref]
  • [10] K. Yanagi, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 034001 (2008) http://dx.doi.org/10.1143/APEX.1.034001[Crossref]
  • [11] S. Niyogi et al., J. Am. Chem. Soc. 123, 733 (2001) http://dx.doi.org/10.1021/ja0024439[Crossref]
  • [12] A.A. Vetcher et al., Nanotechnology 17, 4263 (2006) http://dx.doi.org/10.1088/0957-4484/17/16/043[Crossref]
  • [13] W.J. Kim, M.L. Usrey, M.S. Strano, Chem. Mater. 19, 1571 (2007) http://dx.doi.org/10.1021/cm061862n[Crossref]
  • [14] H. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, H. K. J. Schmidt, J. Am. Chem. Soc. 128, 8396 (2006) http://dx.doi.org/10.1021/ja0621501[Crossref]
  • [15] T. Tanaka, H. Jin, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 114001 (2008) http://dx.doi.org/10.1143/APEX.1.114001[Crossref]
  • [16] T. Tanaka et al., NanoLett. 9, 1497 (2009) http://dx.doi.org/10.1021/nl8034866[Crossref]
  • [17] W. Wenseleers et al., Adv. Funct. Mater. 14, 1105 (2004) http://dx.doi.org/10.1002/adfm.200400130[Crossref]
  • [18] R.E. Akins. P.M. Levin, R.S. Tuan, Anal. Biochem. 202, 172 (1992) http://dx.doi.org/10.1016/0003-2697(92)90224-U[Crossref]
  • [19] X.G. Wang, Y.J. Fan, J. Appl. Electrochem. 39, 1451 (2009) http://dx.doi.org/10.1007/s10800-009-9824-3[Crossref]
  • [20] K. Yang, Q. Jing, W. Wu, L. Zhu, B. Xing, Environ. Sci. Technol. 44, 681 (2010) http://dx.doi.org/10.1021/es902173v[Crossref]
  • [21] S. Bandow et al., J. Phys. Chem. B101, 8839 (1997)
  • [22] E. Mizoguti et al., Chem. Phys. Lett. 321, 297 (2000) http://dx.doi.org/10.1016/S0009-2614(00)00371-7[Crossref]
  • [23] O. Jost et al., Appl. Phys. Lett. 75, 2217 (1999) http://dx.doi.org/10.1063/1.124969[Crossref]
  • [24] H. Kuzmany et al., Eur. Phys. J. B 22, 307 (2001) http://dx.doi.org/10.1007/s100510170108[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0083-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.