PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 3 | 751-774
Article title

Irreducible tensor form of three-particle operator for open-shell atoms

Content
Title variants
Languages of publication
EN
Abstracts
EN
A three-particle operator in a second quantized form is studied systematically and comprehensively. The operator is transformed into irreducible tensor form. Possible coupling schemes, identified by the classes of symmetric group S6, are presented. Recoupling coefficients that make it possible to transform a given scheme into another are produced by using the angular momentum theory combined with quasispin formalism. The classification of the three-particle operator which acts on n = 1, 2,..., 6 open shells of equivalent electrons of atom is considered. The procedure to construct three-particle matrix elements are examined.
Publisher

Journal
Year
Volume
9
Issue
3
Pages
751-774
Physical description
Dates
published
1 - 6 - 2011
online
26 - 2 - 2011
Contributors
  • Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108, Vilnius, Lithuania, Rytis.Jursenas@tfai.vu.lt
  • Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108, Vilnius, Lithuania, Gintaras.Merkelis@tfai.vu.lt
References
  • [1] B. Brandow, Rev. Mod. Phys. 39, 771 (1967) http://dx.doi.org/10.1103/RevModPhys.39.771[Crossref]
  • [2] V. Kvasnička, Czechoslovak Journal of Physics B 24, 605 (1974) http://dx.doi.org/10.1007/BF01587295[Crossref]
  • [3] I. Lindgren, J. Phys. B-At. Mol. Opt. 7, 2441 (1974) http://dx.doi.org/10.1088/0022-3700/7/18/010[Crossref]
  • [4] I. Lindgren, J. Morrison, Atomic Many-Body Theory, Springer Series in Chemical Physics Vol. 13 (Sprignger, Berlin, 1982)
  • [5] R. Karazija, Introduction to the Theory of X-ray and Electronic Spectra of Free Atoms (Plenum Press, New York, 1996)
  • [6] G. Merkelis, R. Karazija, J. Electron Spectrosc. 133, 123 (2003) http://dx.doi.org/10.1016/j.elspec.2003.09.004[Crossref]
  • [7] B.R. Judd, Second Quantization and Atomic Spectroscopy (The Johns Hopkins Press, Baltimore, 1967)
  • [8] B.R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New York, 1963)
  • [9] Z. Rudzikas, J. Kaniauskas, Quasispin and Isospin in the Theory of Atom (Mokslas publishers, Vilnius, 1984)
  • [10] Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge University Press, Cambridge, 1997) http://dx.doi.org/10.1017/CBO9780511524554[Crossref]
  • [11] G. Merkelis, Phys. Scripta 61, 662 (2000) http://dx.doi.org/10.1238/Physica.Regular.061a00662[Crossref]
  • [12] S.G. Porsev, A. Derevianko, Phys. Rev. A 73, 012501 (2006) http://dx.doi.org/10.1103/PhysRevA.73.012501[Crossref]
  • [13] G. Gaigalas, Z. Rudzikas, Ch.F. Fischer, J. Phys. B-At. Mol. Opt. 30, 3747 (1997) http://dx.doi.org/10.1088/0953-4075/30/17/006[Crossref]
  • [14] G. Gaigalas, S. Fritzsche, I.P. Grant, Comput. Phys. Commun. 139, 263 (2001) http://dx.doi.org/10.1016/S0010-4655(01)00213-2[Crossref]
  • [15] R. Juršėnas, G. Merkelis, Cent. Eur. J. Phys. 8, 480 (2009)
  • [16] R. Juršėnas, G. Merkelis, Atom. Data Nucl. Data, DOI:10.1016/j.adt.2010.08.001 [Crossref]
  • [17] A. Jucys, Y. Levinson, V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translations, Jerusalem, 1964)
  • [18] V.V. Vanagas, J.V. čiplys, Trudy Akademii Nauk Litovskoi SSR B 3, 17 (1958) (in Russian)
  • [19] S. Ališauskas, arXiv:math/9912142
  • [20] S. Ališauskas, arXiv:math-ph/0509035
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0082-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.