Preferences help
enabled [disable] Abstract
Number of results
2011 | 9 | 2 | 530-541
Article title

Simulations on the mechanism of CNT bundle growth upon smooth and nanostructured Ni as well as θ-Al2O3 catalysts

Title variants
Languages of publication
In the current study, we have performed ab initio DFT calculations on the gradually growing 2D periodic models of capped single-wall carbon nanotubes (SW CNTs) upon their perpendicular junctions with the Ni(111) substrate, in order to understand the peculiarities of the initial stage of their growth on either smooth or nanostructured catalytic particles. Appearance of the adsorbed carbon atoms upon the substrate follows from the dissociation of CVD hydrocarbon molecules, e.g., CH4: (CH4)ads → (CH)ads+3Hads and (CH)ads → Cads+Hads. (Since the effective growth of CNTs upon Ni nanoparticles occur inside the nanopores of amorphous alumina, we have also simulated analogous surface reactions upon the θ-Al2O3(010) slabs). Association of the adsorbed carbon atoms upon the catalyst surface precedes further swelling of the (Cn)ads islands after appearance of pentagonal defects within a honeycomb sheet which are more probable upon the catalyst surface containing either defects or nanoclusters (as in the case of the nanostructured substrate). The gradual growth of the capped CNTs is considerably more effective upon the nanostructured Ni(111) substrate compared to a smooth nickel substrate (cf. values of CNT adhesion energy per boundary C atom for chiralities of either armchair-type, 4.04 vs. 2.51 eV, or zigzag-type, 4.61 vs. 2.14 eV, respectively). The electronic charge transfer from the Ni catalyst towards the CNTs has been calculated for both chiralities (> 1 e per C atom), i.e., quite strong chemical bonds are formed within the CNT/Ni(111) interconnects.
Physical description
1 - 4 - 2011
20 - 2 - 2011
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga, LV-1063, Latvia
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga, LV-1063, Latvia
  • INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi 40, Frascati, Italy
  • [1] M. Ahlskog, Ch. Laurent, M. Baxendale, M. Huhtala, In: H.S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology Vol. 3 (American Sci. Publishers, Valencia, CA, 2004) 139
  • [2] A. Loiseau et al., C. R. Phys. 4, 975 (2003)[Crossref]
  • [3] H. Zhu et al., Small 1, 1180 (2005)[Crossref]
  • [4] S. Hofmann et al., Nano Lett. 7, 602 (2007)[Crossref]
  • [5] H. Amara, J.-M. Roussel, C. Bichara, J.-P. Gaspard Ducastelle, Phys. Rev. B 79, 014109 (2009)[Crossref]
  • [6] C. Journet et al., Nature 388, 756 (1997)[Crossref]
  • [7] J. Gavillet et al., Phys. Rev. Lett. 87, 275504 (2001)[Crossref]
  • [8] J. Gavillet et al., J. Nanosci. Nanotechno. 4, 346 (2004)[Crossref]
  • [9] J.-F. Colomer et al., Chem. Commun. 14, 1343 (1999)[Crossref]
  • [10] A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, E.I. Kauppinen, Carbon 43, 2251 (2005)[Crossref]
  • [11] M. Lin et al., Nano Lett. 6, 449 (2006)[Crossref]
  • [12] H. Amara, C. Bichara, F. Ducastelle, Phys. Rev. Lett. 100, 056105 (2008)[Crossref]
  • [13] N.I. Alekseev, N.A. Charykov, Russ. J. Phys. Chem. A 82, 2191 (2008)[Crossref]
  • [14] F. Ding, K. Bolton, A. Rosén, J. Phys. Chem. B 108, 17369 (2004)[Crossref]
  • [15] F. Ding et al., Nano Lett. 8, 463 (2008)[Crossref]
  • [16] O.V. Yazyev, A. Pasquarello, Phys. Rev. Lett. 100, 156102 (2008)[Crossref]
  • [17] A. Börjesson, W. Zhu, H. Amara, C. Bichara, K. Bolton, Nano Lett. 9, 1117 (2009)[Crossref]
  • [18] Q.M. Zhang, J.C. Wells, X.G. Gong, Z. Zhang, Phys. Rev. B 69, 205413 (2004)[Crossref]
  • [19] S. Reich, L. Li, J. Robertson, Phys. Rev. B 72, 165423 (2005)[Crossref]
  • [20] M. Cantoro et al., Nano Lett. 6, 1107 (2006)[Crossref]
  • [21] V.L. Kuznetsov, A.N. Usoltseva, A.L. Chuvilin, E.D. Obraztsova, J.-M. Bonard, Phys. Rev. B 64, 235401 (2001)[Crossref]
  • [22] J. Zhao, A. Martinez-Limia, P.B. Balbuena, Nanotechnology 16, S575 (2005)[Crossref]
  • [23] Y.-A. Zhu, Y.-C. Dai, D. Chen, W.-K. Yuan, Surf. Sci. 601, 1319 (2007)[Crossref]
  • [24] S. Piskunov, G. Zvejnieks, Yu.F. Zhukovskii, S. Bellucci, Thin Solid Films (in press)
  • [25] Yu.F. Zhukovskii, E.A. Kotomin, B. Herschend, K. Hermansson, P.W.M. Jacobs, Surf. Sci. 513, 343 (2002)[Crossref]
  • [26] Yu.F. Zhukovskii, N. Pugno, A.I. Popov, C. Balasubramanian, S. Bellucci, J. Phys.: Condens. Matter 19, 395021 (2007)[Crossref]
  • [27] Yu.F. Zhukovskii, S. Bellucci, S. Piskunov, L. Trinkler, B. Berzina, Eur. Phys. J. B 67, 519 (2009)[Crossref]
  • [28] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)[Crossref]
  • [29] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)[Crossref]
  • [30] H.-S. Kim, S.A. Zygmunt, P.C. Stair, P. Zapol, L.A. Curtiss, J. Phys. Chem. C 113, 8836 (2009)[Crossref]
  • [31] S.P. Adiga, P. Zapol, L.A. Curtiss, Phys. Rev. B 74, 064204 (2006)[Crossref]
  • [32] R.I. Duchovic, W.L. Hase, H.B. Schlegel, M.J. Frisch, K. Raghavachari, Chem. Phys. Lett. 89, 120 (1982)[Crossref]
  • [33] G. Kalibaeva et al., J. Phys. Chem. B 110, 3638 (2006)[Crossref]
  • [34] M. Fujita, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 13834 (1992)[Crossref]
  • [35] J-C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 677 (2007)[Crossref]
  • [36] J.B.O. Zhou et al., Science 263, 1744 (1994)[Crossref]
  • [37] P. Ciambelli, D. Sannino, M. Sarno, A. Fonseca, Nagy, J. Nanosci. Nanotechno. 4, 779 (2004)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.