EN
The velocity field corresponding to the unsteady motion of a viscous fluid between two side walls perpendicular to a plate is determined by means of the Fourier transforms. The motion of the fluid is produced by the plate which after the time t = 0, applies an oscillating shear stress to the fluid. The solutions that have been obtained, presented as a sum of the steady-state and transient solutions satisfy the governing equation and all imposed initial and boundary conditions. In the absence of the side walls they are reduced to the similar solutions corresponding to the motion over an infinite plate. Finally, the influence of the side walls on the fluid motion, the required time to reach the steady-state, as well as the distance between the walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence, are established by means of graphical illustrations.