PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 3 | 662-673
Article title

Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents an analytical solution for slow axonal transport in an axon. The governing equations for slow axonal transport are based on the stop-and-go hypothesis which assumes that organelles alternate between short periods of rapid movement on microtubules (MTs), short on-track pauses, and prolonged off-track pauses, when they temporarily disengage from MTs. The model includes six kinetic states for organelles: two for off-track organelles (anterograde and retrograde), two for running organelles, and two for pausing organelles. An analytical solution is obtained for a steady-state situation. To obtain the analytical solution, the governing equations are uncoupled by using a perturbation method. The solution is validated by comparing it with a high-accuracy numerical solution. Results are presented for neurofilaments (NFs), which are characterized by small diffusivity, and for tubulin oligomers, which are characterized by large diffusivity. The difference in transport modes between these two types of organelles in a short axon is discussed. A comparison between zero-order and first-order approximations makes it possible to obtain a physical insight into the effects of organelle reversals (when organelles change the type of a molecular motor they are attached to, an anterograde versus retrograde motor).
Publisher
Journal
Year
Volume
9
Issue
3
Pages
662-673
Physical description
Dates
published
1 - 6 - 2011
online
26 - 2 - 2011
References
  • [1] J.E. Duncan, L.S.B. Goldstein, Plos Genet. 2, 1275 (2006) http://dx.doi.org/10.1371/journal.pgen.0020124[Crossref]
  • [2] R.V. Barkus et al., Mol. Biol. Cell 19, 274 (2008) http://dx.doi.org/10.1091/mbc.E07-03-0261[Crossref]
  • [3] L.S.B. Goldstein, Z.H. Yang, Annu. Rev. Neurosci. 23, 39 (2000) http://dx.doi.org/10.1146/annurev.neuro.23.1.39[Crossref]
  • [4] J.V. Shah, D.W. Cleveland, Curr. Opin. Cell Biol. 14, 58 (2002) http://dx.doi.org/10.1016/S0955-0674(01)00294-0[Crossref]
  • [5] S. Roy et al., J. Neurosci. 27, 3131 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4999-06.2007[Crossref]
  • [6] S. Roy et al., J. Neurosci. 20, 6849 (2000)
  • [7] L. Wang et al., Nat. Cell Biol. 2, 137 (2000) http://dx.doi.org/10.1038/35004008[Crossref]
  • [8] C.H. Xia et al., J. Cell Biol. 161, 55 (2003) http://dx.doi.org/10.1083/jcb.200301026[Crossref]
  • [9] A. Brown, L. Wang, P. Jung, Mol. Biol. Cell 16, 4243 (2005) http://dx.doi.org/10.1091/mbc.E05-02-0141[Crossref]
  • [10] -G. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005) http://dx.doi.org/10.1016/j.jtbi.2005.04.018[Crossref]
  • [11] -N. Trivedi, P. Jung, A. Brown, J. Neurosci. 27, 507 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4227-06.2007[Crossref]
  • [12] -X.W. Zhu, P.I. Moreira, M.A. Smith, G. Perry, Trends Mol. Med. 11, 391 (2005) http://dx.doi.org/10.1016/j.molmed.2005.07.002[Crossref]
  • [13] -A.V. Kuznetsov, A.A. Avramenko, Math. Biosci. 218, 142 (2009) http://dx.doi.org/10.1016/j.mbs.2009.01.005[Crossref]
  • [14] -J. Motil, M. Dubey, W.K.-H. Chan, T.B. Shea, Brain Res. 1164, 125 (2007) http://dx.doi.org/10.1016/j.brainres.2006.09.108[Crossref]
  • [15] -J.P. Julien, Cell 104, 581 (2001) http://dx.doi.org/10.1016/S0092-8674(01)00244-6[Crossref]
  • [16] -S. Sasaki, H. Warita, K. Abe, M. Iwata, Acta Neuropathol. 110, 48 (2005) http://dx.doi.org/10.1007/s00401-005-1021-9[Crossref]
  • [17] -B.P. Graham, K. Lauchlan, D.R. Mclean, J. Comput. Neurosci. 20, 43 (2006) http://dx.doi.org/10.1007/s10827-006-5330-3[Crossref]
  • [18] -D.R. McLean, B.P. Graham, P. Roy. Soc. Lond. A Mat. 460, 2437 (2004) http://dx.doi.org/10.1098/rspa.2004.1288[Crossref]
  • [19] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Commun. Heat Mass 36, 293 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.01.005[Crossref]
  • [20] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Com mun. Heat Mass 36, 641 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.04.002[Crossref]
  • [21] -A.V. Kuznetsov, Int. Commun. Heat Mass 35, 881 (2008) http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.013[Crossref]
  • [22] -A.V. Kuznetsov, A.A. Avramenko, P. Roy. Soc. A-Math. Phy. 464, 2867 (2008) http://dx.doi.org/10.1098/rspa.2008.0127[Crossref]
  • [23] -A.V. Kuznetsov, Cent. Eur. J. Phys., DOI: 10.2478/s11534-010-0032-x [Crossref]
  • [24] -P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002[Crossref]
  • [25] -K.E. Miller, S.R. Heidemann, Exp. Cell Res. 314, 1981 (2008) http://dx.doi.org/10.1016/j.yexcr.2008.03.004[Crossref]
  • [26] -M.V. Rao et al., J. Cell Biol. 159, 279 (2002) http://dx.doi.org/10.1083/jcb.200205062[Crossref]
  • [27] -A. Friedman, B. Hu, Arch. Ration. Mech. An. 186, 251 (2007) http://dx.doi.org/10.1007/s00205-007-0069-1[Crossref]
  • [28] -G.T. Shubeita et al., Cell 135, 1098 (2008) http://dx.doi.org/10.1016/j.cell.2008.10.021[Crossref]
  • [29] -J.A. Galbraith, T.S. Reese, M.L. Schlief, P.E. Gallant, P. Natl. Acad. Sci. USA 96, 11589 (1999) http://dx.doi.org/10.1073/pnas.96.20.11589[Crossref]
  • [30] -D.A. Smith, R.M. Simmons, Biophys. J. 80, 45 (2001) http://dx.doi.org/10.1016/S0006-3495(01)75994-2[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0066-0
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.