Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 3 | 662-673

Article title

Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper presents an analytical solution for slow axonal transport in an axon. The governing equations for slow axonal transport are based on the stop-and-go hypothesis which assumes that organelles alternate between short periods of rapid movement on microtubules (MTs), short on-track pauses, and prolonged off-track pauses, when they temporarily disengage from MTs. The model includes six kinetic states for organelles: two for off-track organelles (anterograde and retrograde), two for running organelles, and two for pausing organelles. An analytical solution is obtained for a steady-state situation. To obtain the analytical solution, the governing equations are uncoupled by using a perturbation method. The solution is validated by comparing it with a high-accuracy numerical solution. Results are presented for neurofilaments (NFs), which are characterized by small diffusivity, and for tubulin oligomers, which are characterized by large diffusivity. The difference in transport modes between these two types of organelles in a short axon is discussed. A comparison between zero-order and first-order approximations makes it possible to obtain a physical insight into the effects of organelle reversals (when organelles change the type of a molecular motor they are attached to, an anterograde versus retrograde motor).

Publisher

Journal

Year

Volume

9

Issue

3

Pages

662-673

Physical description

Dates

published
1 - 6 - 2011
online
26 - 2 - 2011

Contributors

  • Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA

References

  • [1] J.E. Duncan, L.S.B. Goldstein, Plos Genet. 2, 1275 (2006) http://dx.doi.org/10.1371/journal.pgen.0020124[Crossref]
  • [2] R.V. Barkus et al., Mol. Biol. Cell 19, 274 (2008) http://dx.doi.org/10.1091/mbc.E07-03-0261[Crossref]
  • [3] L.S.B. Goldstein, Z.H. Yang, Annu. Rev. Neurosci. 23, 39 (2000) http://dx.doi.org/10.1146/annurev.neuro.23.1.39[Crossref]
  • [4] J.V. Shah, D.W. Cleveland, Curr. Opin. Cell Biol. 14, 58 (2002) http://dx.doi.org/10.1016/S0955-0674(01)00294-0[Crossref]
  • [5] S. Roy et al., J. Neurosci. 27, 3131 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4999-06.2007[Crossref]
  • [6] S. Roy et al., J. Neurosci. 20, 6849 (2000)
  • [7] L. Wang et al., Nat. Cell Biol. 2, 137 (2000) http://dx.doi.org/10.1038/35004008[Crossref]
  • [8] C.H. Xia et al., J. Cell Biol. 161, 55 (2003) http://dx.doi.org/10.1083/jcb.200301026[Crossref]
  • [9] A. Brown, L. Wang, P. Jung, Mol. Biol. Cell 16, 4243 (2005) http://dx.doi.org/10.1091/mbc.E05-02-0141[Crossref]
  • [10] -G. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005) http://dx.doi.org/10.1016/j.jtbi.2005.04.018[Crossref]
  • [11] -N. Trivedi, P. Jung, A. Brown, J. Neurosci. 27, 507 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4227-06.2007[Crossref]
  • [12] -X.W. Zhu, P.I. Moreira, M.A. Smith, G. Perry, Trends Mol. Med. 11, 391 (2005) http://dx.doi.org/10.1016/j.molmed.2005.07.002[Crossref]
  • [13] -A.V. Kuznetsov, A.A. Avramenko, Math. Biosci. 218, 142 (2009) http://dx.doi.org/10.1016/j.mbs.2009.01.005[Crossref]
  • [14] -J. Motil, M. Dubey, W.K.-H. Chan, T.B. Shea, Brain Res. 1164, 125 (2007) http://dx.doi.org/10.1016/j.brainres.2006.09.108[Crossref]
  • [15] -J.P. Julien, Cell 104, 581 (2001) http://dx.doi.org/10.1016/S0092-8674(01)00244-6[Crossref]
  • [16] -S. Sasaki, H. Warita, K. Abe, M. Iwata, Acta Neuropathol. 110, 48 (2005) http://dx.doi.org/10.1007/s00401-005-1021-9[Crossref]
  • [17] -B.P. Graham, K. Lauchlan, D.R. Mclean, J. Comput. Neurosci. 20, 43 (2006) http://dx.doi.org/10.1007/s10827-006-5330-3[Crossref]
  • [18] -D.R. McLean, B.P. Graham, P. Roy. Soc. Lond. A Mat. 460, 2437 (2004) http://dx.doi.org/10.1098/rspa.2004.1288[Crossref]
  • [19] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Commun. Heat Mass 36, 293 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.01.005[Crossref]
  • [20] -A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Com mun. Heat Mass 36, 641 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.04.002[Crossref]
  • [21] -A.V. Kuznetsov, Int. Commun. Heat Mass 35, 881 (2008) http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.013[Crossref]
  • [22] -A.V. Kuznetsov, A.A. Avramenko, P. Roy. Soc. A-Math. Phy. 464, 2867 (2008) http://dx.doi.org/10.1098/rspa.2008.0127[Crossref]
  • [23] -A.V. Kuznetsov, Cent. Eur. J. Phys., DOI: 10.2478/s11534-010-0032-x [Crossref]
  • [24] -P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002[Crossref]
  • [25] -K.E. Miller, S.R. Heidemann, Exp. Cell Res. 314, 1981 (2008) http://dx.doi.org/10.1016/j.yexcr.2008.03.004[Crossref]
  • [26] -M.V. Rao et al., J. Cell Biol. 159, 279 (2002) http://dx.doi.org/10.1083/jcb.200205062[Crossref]
  • [27] -A. Friedman, B. Hu, Arch. Ration. Mech. An. 186, 251 (2007) http://dx.doi.org/10.1007/s00205-007-0069-1[Crossref]
  • [28] -G.T. Shubeita et al., Cell 135, 1098 (2008) http://dx.doi.org/10.1016/j.cell.2008.10.021[Crossref]
  • [29] -J.A. Galbraith, T.S. Reese, M.L. Schlief, P.E. Gallant, P. Natl. Acad. Sci. USA 96, 11589 (1999) http://dx.doi.org/10.1073/pnas.96.20.11589[Crossref]
  • [30] -D.A. Smith, R.M. Simmons, Biophys. J. 80, 45 (2001) http://dx.doi.org/10.1016/S0006-3495(01)75994-2[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0066-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.