Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 3 | 716-721

Article title

A DFT study on the interaction between europium, uranium and SWCNT

Content

Title variants

Languages of publication

EN

Abstracts

EN
We investigate the electronic and band structure for the (8; 0) single-wall carbon nanotube (SWCNT) with a europium (Eu) and a uranium (U) atom outside by using the first-principles method with the density functional theory (DFT). The calculated band structure (BS), total density of state (TDOS), and projected density of state (PDOS) can elucidate the differences between the pure (8; 0) SWCNT and the nuclei outside the SWCNT. The indirect band gaps are obtained when Eu and U atom are put outside the (8; 0) CNT; they are 0.037 eV and 0.036 eV, respectively, which is much smaller than 0.851 eV for pure CNT. Compared with pure (8; 0) SWCNT, the bottom of the conduction band moves down by 0.383 eV and 0.451 eV with the Eu and U outside, and the top of valence band moves up by 0.127 eV and 0.162 eV, respectively. More significantly, the top of the valence band has exceeded the fermi-level. So, a single nucleus changes the semiconductor character of pure nanotube to semi-metal.

Keywords

Publisher

Journal

Year

Volume

9

Issue

3

Pages

716-721

Physical description

Dates

published
1 - 6 - 2011
online
26 - 2 - 2011

Contributors

author
  • School of Physical Science and Technology, Sichuan University, Chengdu, 610065, China
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
author
  • School of Physical Science and Technology, Sichuan University, Chengdu, 610065, China

References

  • [1] S. Iijima, Nature (London) 354, 56 (1991) http://dx.doi.org/10.1038/354056a0[Crossref]
  • [2] X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001) http://dx.doi.org/10.1063/1.1377627[Crossref]
  • [3] B. Gao et al., Chem. Phys. Lett. 307, 153 (1999) http://dx.doi.org/10.1016/S0009-2614(99)00486-8[Crossref]
  • [4] A. Saito, S. Uemur, Carbon 38, 169 (2000) http://dx.doi.org/10.1016/S0008-6223(99)00139-6[Crossref]
  • [5] C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402–1 (2004) http://dx.doi.org/10.1103/PhysRevLett.92.077402
  • [6] T.W. Odom, J.L. Huang, P. Kimand, C.M. Lieber, Nature 391, 62 (1998) http://dx.doi.org/10.1038/34145[Crossref]
  • [7] P.L. McEuen, M.S. Fuhrer, H. Park, IEEE Trans. Nanotechnol. 1, 78 (2002) http://dx.doi.org/10.1109/TNANO.2002.1005429[Crossref]
  • [8] K. Uchida, S. Okada, Phys. Rev. B 79, 085402 (2009) http://dx.doi.org/10.1103/PhysRevB.79.085402[Crossref]
  • [9] S.J. Tans et al., Nature 386, 474 (1997) http://dx.doi.org/10.1038/386474a0[Crossref]
  • [10] M. Pumera, M. Cabala, K. Veltruská, I. Ichinose, J. Tang, Chem. Mater. 19, 6513 (2007) http://dx.doi.org/10.1021/cm702330a[Crossref]
  • [11] T. Liang, W.X. Li, H. Zhang, J. Mol. Struc.-Theochem 905, 44 (2009) http://dx.doi.org/10.1016/j.theochem.2009.03.007[Crossref]
  • [12] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998) http://dx.doi.org/10.1063/1.122477[Crossref]
  • [13] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002) http://dx.doi.org/10.1126/science.1060928[Crossref]
  • [14] H.C. Dam et al., Phys. Rev. B 79, 115426 (2009) http://dx.doi.org/10.1103/PhysRevB.79.115426[Crossref]
  • [15] C. Cao et al., Phys. Rev. B 79, 075127 (2009) http://dx.doi.org/10.1103/PhysRevB.79.075127[Crossref]
  • [16] Y.L. Mao, X.H. Yan, Y. Xiao, Nanotechnology 16, 3092 (2005) http://dx.doi.org/10.1088/0957-4484/16/12/061[Crossref]
  • [17] Y. Andres, H.J. MacCordick, J.C. Hubert, Appl. Microbiol. Biot. 39, 413 (1993) http://dx.doi.org/10.1007/BF00192103[Crossref]
  • [18] C.L. Chen, X.K. Wang, M. Nagatsu, Environ. Sci. Technol. 43, 2362 (2009) http://dx.doi.org/10.1021/es803018a[Crossref]
  • [19] C.L. Chen et al., J. Colloid Interf. Sci. 323, 33 (2008) http://dx.doi.org/10.1016/j.jcis.2008.04.046[Crossref]
  • [20] H. Cho, B.A. Smith, J.D. Wnuk, D.H. Fairbrother, W.P. Ball, Environ. Sci. Technol. 42, 2899 (2008) http://dx.doi.org/10.1021/es702363e[Crossref]
  • [21] X.K. Wang et al., Environ. Sci. Technol. 39, 7084 (2005) http://dx.doi.org/10.1021/es0506307[Crossref]
  • [22] M.D. Segall et al., J. Phys.: Condens. Matter 14, 2717 (2002) http://dx.doi.org/10.1088/0953-8984/14/11/301[Crossref]
  • [23] S.J. Clark et al., Z. Kristallogr. 220, 567 (2005) http://dx.doi.org/10.1524/zkri.220.5.567.65075[Crossref]
  • [24] E. Engel, S. Keller, R.M. Dreizler, Phys. Rev. A 53, 1367 (1996) http://dx.doi.org/10.1103/PhysRevA.53.1367[Crossref]
  • [25] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 28, 3865 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3865[Crossref]
  • [26] A. Matveev, M. Staufer, M. Mayer, N. Rosch, Int. J. Quantum Chem. 75, 863 (1999) http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<863::AID-QUA51>3.0.CO;2-T[Crossref]
  • [27] H.J. Monkhorst, J.D. Park, Phys. Rev. B 13, 5188 (1976) http://dx.doi.org/10.1103/PhysRevB.13.5188[Crossref]
  • [28] M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989) http://dx.doi.org/10.1103/PhysRevB.40.3616[Crossref]
  • [29] S. Peng, K. Cho, Nano Lett. 3, 513 (2003) http://dx.doi.org/10.1021/nl034064u[Crossref]
  • [30] G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996) http://dx.doi.org/10.1016/0927-0256(96)00008-0[Crossref]
  • [31] W.H. Xie, Y.Q. Xu, B.G. Liu, Phys. Rev. Lett. 18, 037204 (2003) http://dx.doi.org/10.1103/PhysRevLett.91.037204[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0052-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.