PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 3 | 716-721
Article title

A DFT study on the interaction between europium, uranium and SWCNT

Content
Title variants
Languages of publication
EN
Abstracts
EN
We investigate the electronic and band structure for the (8; 0) single-wall carbon nanotube (SWCNT) with a europium (Eu) and a uranium (U) atom outside by using the first-principles method with the density functional theory (DFT). The calculated band structure (BS), total density of state (TDOS), and projected density of state (PDOS) can elucidate the differences between the pure (8; 0) SWCNT and the nuclei outside the SWCNT. The indirect band gaps are obtained when Eu and U atom are put outside the (8; 0) CNT; they are 0.037 eV and 0.036 eV, respectively, which is much smaller than 0.851 eV for pure CNT. Compared with pure (8; 0) SWCNT, the bottom of the conduction band moves down by 0.383 eV and 0.451 eV with the Eu and U outside, and the top of valence band moves up by 0.127 eV and 0.162 eV, respectively. More significantly, the top of the valence band has exceeded the fermi-level. So, a single nucleus changes the semiconductor character of pure nanotube to semi-metal.
Keywords
Publisher
Journal
Year
Volume
9
Issue
3
Pages
716-721
Physical description
Dates
published
1 - 6 - 2011
online
26 - 2 - 2011
References
  • [1] S. Iijima, Nature (London) 354, 56 (1991) http://dx.doi.org/10.1038/354056a0[Crossref]
  • [2] X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001) http://dx.doi.org/10.1063/1.1377627[Crossref]
  • [3] B. Gao et al., Chem. Phys. Lett. 307, 153 (1999) http://dx.doi.org/10.1016/S0009-2614(99)00486-8[Crossref]
  • [4] A. Saito, S. Uemur, Carbon 38, 169 (2000) http://dx.doi.org/10.1016/S0008-6223(99)00139-6[Crossref]
  • [5] C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402–1 (2004) http://dx.doi.org/10.1103/PhysRevLett.92.077402
  • [6] T.W. Odom, J.L. Huang, P. Kimand, C.M. Lieber, Nature 391, 62 (1998) http://dx.doi.org/10.1038/34145[Crossref]
  • [7] P.L. McEuen, M.S. Fuhrer, H. Park, IEEE Trans. Nanotechnol. 1, 78 (2002) http://dx.doi.org/10.1109/TNANO.2002.1005429[Crossref]
  • [8] K. Uchida, S. Okada, Phys. Rev. B 79, 085402 (2009) http://dx.doi.org/10.1103/PhysRevB.79.085402[Crossref]
  • [9] S.J. Tans et al., Nature 386, 474 (1997) http://dx.doi.org/10.1038/386474a0[Crossref]
  • [10] M. Pumera, M. Cabala, K. Veltruská, I. Ichinose, J. Tang, Chem. Mater. 19, 6513 (2007) http://dx.doi.org/10.1021/cm702330a[Crossref]
  • [11] T. Liang, W.X. Li, H. Zhang, J. Mol. Struc.-Theochem 905, 44 (2009) http://dx.doi.org/10.1016/j.theochem.2009.03.007[Crossref]
  • [12] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998) http://dx.doi.org/10.1063/1.122477[Crossref]
  • [13] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002) http://dx.doi.org/10.1126/science.1060928[Crossref]
  • [14] H.C. Dam et al., Phys. Rev. B 79, 115426 (2009) http://dx.doi.org/10.1103/PhysRevB.79.115426[Crossref]
  • [15] C. Cao et al., Phys. Rev. B 79, 075127 (2009) http://dx.doi.org/10.1103/PhysRevB.79.075127[Crossref]
  • [16] Y.L. Mao, X.H. Yan, Y. Xiao, Nanotechnology 16, 3092 (2005) http://dx.doi.org/10.1088/0957-4484/16/12/061[Crossref]
  • [17] Y. Andres, H.J. MacCordick, J.C. Hubert, Appl. Microbiol. Biot. 39, 413 (1993) http://dx.doi.org/10.1007/BF00192103[Crossref]
  • [18] C.L. Chen, X.K. Wang, M. Nagatsu, Environ. Sci. Technol. 43, 2362 (2009) http://dx.doi.org/10.1021/es803018a[Crossref]
  • [19] C.L. Chen et al., J. Colloid Interf. Sci. 323, 33 (2008) http://dx.doi.org/10.1016/j.jcis.2008.04.046[Crossref]
  • [20] H. Cho, B.A. Smith, J.D. Wnuk, D.H. Fairbrother, W.P. Ball, Environ. Sci. Technol. 42, 2899 (2008) http://dx.doi.org/10.1021/es702363e[Crossref]
  • [21] X.K. Wang et al., Environ. Sci. Technol. 39, 7084 (2005) http://dx.doi.org/10.1021/es0506307[Crossref]
  • [22] M.D. Segall et al., J. Phys.: Condens. Matter 14, 2717 (2002) http://dx.doi.org/10.1088/0953-8984/14/11/301[Crossref]
  • [23] S.J. Clark et al., Z. Kristallogr. 220, 567 (2005) http://dx.doi.org/10.1524/zkri.220.5.567.65075[Crossref]
  • [24] E. Engel, S. Keller, R.M. Dreizler, Phys. Rev. A 53, 1367 (1996) http://dx.doi.org/10.1103/PhysRevA.53.1367[Crossref]
  • [25] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 28, 3865 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3865[Crossref]
  • [26] A. Matveev, M. Staufer, M. Mayer, N. Rosch, Int. J. Quantum Chem. 75, 863 (1999) http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<863::AID-QUA51>3.0.CO;2-T[Crossref]
  • [27] H.J. Monkhorst, J.D. Park, Phys. Rev. B 13, 5188 (1976) http://dx.doi.org/10.1103/PhysRevB.13.5188[Crossref]
  • [28] M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989) http://dx.doi.org/10.1103/PhysRevB.40.3616[Crossref]
  • [29] S. Peng, K. Cho, Nano Lett. 3, 513 (2003) http://dx.doi.org/10.1021/nl034064u[Crossref]
  • [30] G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996) http://dx.doi.org/10.1016/0927-0256(96)00008-0[Crossref]
  • [31] W.H. Xie, Y.Q. Xu, B.G. Liu, Phys. Rev. Lett. 18, 037204 (2003) http://dx.doi.org/10.1103/PhysRevLett.91.037204[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0052-6
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.