PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 2 | 319-324
Article title

Atomic layer deposition of HfO2 on graphene from HfCl4 and H2O

Content
Title variants
Languages of publication
EN
Abstracts
EN
Atomic layer deposition of HfO2 on unmodified graphene from HfCl4 and H2O was investigated. Surface RMS roughness down to 0.5 nm was obtained for amorphous, 30 nm thick hafnia film grown at 180°C. HfO2 was also deposited in a two-step temperature process where the initial growth of about 1 nm at 170°C was continued up to 10–30 nm at 300°C. This process yielded uniform, monoclinic HfO2 films with RMS roughness of 1.7 nm for 10–12 nm thick films and 2.5 nm for 30 nm thick films. Raman spectroscopy studies revealed that the deposition process caused compressive biaxial strain in graphene, whereas no extra defects were generated. An 11 nm thick HfO2 film deposited onto bilayer graphene reduced the electron mobility by less than 10% at the Dirac point and by 30–40% far away from it.
Publisher

Journal
Year
Volume
9
Issue
2
Pages
319-324
Physical description
Dates
published
1 - 4 - 2011
online
20 - 2 - 2011
Contributors
author
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
author
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
author
  • Low Temperature Laboratory, Aalto University, Espoo, P.O. Box 15100, Finland
author
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
author
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
author
  • Institute of Physics, University of Tartu, Tartu, 51014, Estonia
  • Low Temperature Laboratory, Aalto University, Espoo, P.O. Box 15100, Finland
References
  • [1] K.S. Novoselov et al., Science 306, 666 (2004) http://dx.doi.org/10.1126/science.1102896[Crossref]
  • [2] A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) http://dx.doi.org/10.1038/nmat1849[Crossref]
  • [3] K.S. Kim et al., Nature 457, 706 (2009) http://dx.doi.org/10.1038/nature07719[Crossref]
  • [4] A. Reina et al., Nano Lett. 9, 30 (2009) http://dx.doi.org/10.1021/nl801827v[Crossref]
  • [5] X. Li et al., Science 324, 1312 (2009) http://dx.doi.org/10.1126/science.1171245[Crossref]
  • [6] J. Kedzierski et al., IEEE T. Electron Dev. 55, 2078 (2008) http://dx.doi.org/10.1109/TED.2008.926593[Crossref]
  • [7] R.L. Puurunen, J. Appl. Phys. 97, 121301 (2005) http://dx.doi.org/10.1063/1.1940727[Crossref]
  • [8] A. Javey et al., Nano Lett. 4, 1319 (2004) http://dx.doi.org/10.1021/nl049222b[Crossref]
  • [9] D.B. Farmer R.G. Gordon, Nano Lett. 6, 699 (2006) http://dx.doi.org/10.1021/nl052453d[Crossref]
  • [10] J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007) http://dx.doi.org/10.1126/science.1144657[Crossref]
  • [11] Y.-M. Lin et al., Nano Lett. 9, 422 (2009) http://dx.doi.org/10.1021/nl803316h[Crossref]
  • [12] B. Lee et al., Appl. Phys. Lett. 92, 203102 (2008) http://dx.doi.org/10.1063/1.2928228[Crossref]
  • [13] X. Wang, S.M. Tabakman, H. Dai, J. Am. Chem. Soc. 130, 8152 (2008) http://dx.doi.org/10.1021/ja8023059[Crossref]
  • [14] Y. Xuan et al., Appl. Phys. Lett. 92, 013101 (2008) http://dx.doi.org/10.1063/1.2828338[Crossref]
  • [15] I. Meric et al., Nat. Nanotechnol. 3, 654 (2008) http://dx.doi.org/10.1038/nnano.2008.268[Crossref]
  • [16] G. Scarel et al., Mater. Sci. Eng. B-Solid 109, 11 (2004) http://dx.doi.org/10.1016/j.mseb.2003.10.021[Crossref]
  • [17] K. Kukli et al., J. Appl. Phys. 96, 5298 (2004) http://dx.doi.org/10.1063/1.1796513[Crossref]
  • [18] J. Aarik et al., J. Cryst. Growth 220, 105 (2000) http://dx.doi.org/10.1016/S0022-0248(00)00831-9[Crossref]
  • [19] J. Aarik et al., Appl. Surf. Sci. 252, 5723 (2006) http://dx.doi.org/10.1016/j.apsusc.2005.07.067[Crossref]
  • [20] J. Aarik et al., Thin Solid Films 340, 110 (1999) http://dx.doi.org/10.1016/S0040-6090(98)01356-X[Crossref]
  • [21] J. Aarik et al., Appl. Surf. Sci. 230, 292 (2004) http://dx.doi.org/10.1016/j.apsusc.2004.02.048[Crossref]
  • [22] K. Kukli et al., Thin Solid Films 479, 1 (2005) http://dx.doi.org/10.1016/j.tsf.2004.11.191[Crossref]
  • [23] S.N. Tkachev et al., J. Mater. Sci. 40, 4293 (2005) http://dx.doi.org/10.1007/s10853-005-2826-6[Crossref]
  • [24] C. Casiraghi et al., Appl. Phys. Lett. 91, 233108 (2007) http://dx.doi.org/10.1063/1.2818692[Crossref]
  • [25] A. Das et al., Nat. Nanotechnol. 3, 210 (2008) http://dx.doi.org/10.1038/nnano.2008.67[Crossref]
  • [26] Z. Ni et al., Nano Res. 1, 273 (2008) http://dx.doi.org/10.1007/s12274-008-8036-1[Crossref]
  • [27] T.M.G. Mohiuddin et al., Phys. Rev. B 79, 205433 (2009) http://dx.doi.org/10.1103/PhysRevB.79.205433[Crossref]
  • [28] W. Bao et al., Nat. Nanotechnol. 4, 562 (2009) http://dx.doi.org/10.1038/nnano.2009.191[Crossref]
  • [29] J. Wang, H.P. Li, R. Stevens, J. Mater. Sci. 27, 5397 (1992) http://dx.doi.org/10.1007/BF00541601[Crossref]
  • [30] S.V. Morozov et al., Phys. Rev. Lett. 100, 016602 (2008) http://dx.doi.org/10.1103/PhysRevLett.100.016602[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0040-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.