Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 1 | 146-156

Article title

A four kinetic state model of fast axonal transport: Model formulation and perturbation solution

Content

Languages of publication

EN

Abstracts

EN
This paper formulates a four kinetic state model for fast axonal transport. The paper further develops the Smith-Simmons model that is based on equations governing intracellular molecular-motor-assisted transport; these equations are extended by considering four rather than three kinetic states for organelles. The model considers plus-end and minus-end-oriented organelles that can be either free (suspended in the cytosol) or attached to microtubules (MTs) (in the latter case organelles are transported by molecular motors). The paper then develops a method for uncoupling differential equations of the proposed model. A perturbation solution of this problem is obtained. The effect of transition between plus-end-oriented and minus-end oriented organelles is discussed. The accuracy of the obtained perturbation solution is evaluated by comparing the zero-order and the first-order results with a high-accuracy numerical solution.

Publisher

Journal

Year

Volume

9

Issue

1

Pages

146-156

Dates

published
1 - 2 - 2011
online
24 - 9 - 2010

Contributors

  • Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA

References

  • [1] R.V. Barkus, O. Klyachko, D. Horiuchi, B.J. Dickson, W.M. Saxton, Mol. Biol. Cell 19, 274 (2008) http://dx.doi.org/10.1091/mbc.E07-03-0261[Crossref]
  • [2] R.B. Vallee, G.S. Bloom, Annual Reviews in Neuroscience 14, 59 (1991) http://dx.doi.org/10.1146/annurev.ne.14.030191.000423[Crossref]
  • [3] M. Linial, The secrets of a functional synapse - from computational and experimental viewpoint, BMC Bioinformatics 7, S6 (2006) http://dx.doi.org/10.1186/1471-2105-7-S1-S6[Crossref]
  • [4] E.L.F. Holzbaur, Axonal transport and neurodegenerative disease, In: P. St.George-Hyslop et al. (Eds.), Intracellular Traffic and Neurodegenerative Disorders, (Springer, Berlin, 2009) 27 http://dx.doi.org/10.1007/978-3-540-87941-1_3
  • [5] L.S.B. Goldstein, Z. Yang, Annual Reviews in Neuroscience 23, 39 (2000) http://dx.doi.org/10.1146/annurev.neuro.23.1.39[Crossref]
  • [6] V. Muresan, J. Neurocytol. 29, 799 (2000) http://dx.doi.org/10.1023/A:1010943424272[Crossref]
  • [7] P.J. Hollenbeck, W.M. Saxton, J. Cell Sci. 118, 5411 (2005) http://dx.doi.org/10.1242/jcs.02745[Crossref]
  • [8] D.D. Hurd, W.M. Saxton, Genetics 144, 1075 (1996)
  • [9] M.A. Martin et al., Mol. Biol. Cell 10, 3717 (1999) [PubMed]
  • [10] L.S.B. Goldstein, Proc. Nat. Acad. Sci. U.S.A. 98, 6999 (2001) http://dx.doi.org/10.1073/pnas.111145298[Crossref]
  • [11] G.B. Stokin et al., Science 307, 1282 (2005) http://dx.doi.org/10.1126/science.1105681[Crossref]
  • [12] K.E. Miller, M.P. Sheetz, J. Cell Sci. 117, 2791 (2004) http://dx.doi.org/10.1242/jcs.01130[Crossref]
  • [13] A.D. Pilling, D. Horiuchi, C.M. Lively, W.M. Saxton, Mol. Biol. Cell 17, 2057 (2006) http://dx.doi.org/10.1091/mbc.E05-06-0526[Crossref]
  • [14] D.A. Smith, R.M. Simmons, Biophys. J. 80, 45 (2001) http://dx.doi.org/10.1016/S0006-3495(01)75994-2[Crossref]
  • [15] P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002[Crossref]
  • [16] A.V. Kuznetsov, K. Hooman, Int. J. Heat Mass Tran. 51, 5695 (2008) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.04.022[Crossref]
  • [17] A.V. Kuznetsov, Int. Commun. Heat Mass 35, 881 (2008) http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.04.013[Crossref]
  • [18] A.V. Kuznetsov, A.A. Avramenko, Int. Commun. Heat Mass 36, 1 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.09.004[Crossref]
  • [19] A.V. Kuznetsov, A.A. Avramenko, Math. Biosci. 218, 142 (2009) http://dx.doi.org/10.1016/j.mbs.2009.01.005[Crossref]
  • [20] B. Alberts et al., Molecular Biology of the Cell, 5th ed. (Garland Science, New York, 2008)
  • [21] J. Beeg et al., Biophys. J. 94, 532 (2008) http://dx.doi.org/10.1529/biophysj.106.097881[Crossref]
  • [22] C. Leduc et al., Proc. Natl. Acad. Sci. U.S.A. 101, 17096 (2004) http://dx.doi.org/10.1073/pnas.0406598101[Crossref]
  • [23] M.J. Schnitzer, K. Visscher, S.M. Block, Nat. Cell Biol. 2, 718 (2000) http://dx.doi.org/10.1038/35036345[Crossref]
  • [24] R.D. Vale et al., Nature 380, 451 (1996) http://dx.doi.org/10.1038/380451a0[Crossref]
  • [25] N.J. Carter, R.A. Cross, Nature 435, 308 (2005) http://dx.doi.org/10.1038/nature03528[Crossref]
  • [26] S.J. King, T.A. Schroer, Nat. Cell Biol. 2, 20 (2000) http://dx.doi.org/10.1038/71338[Crossref]
  • [27] S.L. Reck-Peterson et al., Cell 126, 335 (2006) http://dx.doi.org/10.1016/j.cell.2006.05.046[Crossref]
  • [28] S. Toba, T.M. Watanabe, L. Yamaguchi-Okimoto, Y.Y. Toyoshima, H. Higuchi, Proc. Natl. Acad. Sci. U.S.A. 103, 5741 (2006) http://dx.doi.org/10.1073/pnas.0508511103[Crossref]
  • [29] C. Kural et al., Science 308, 1469 (2005) http://dx.doi.org/10.1126/science.1108408[Crossref]
  • [30] D.B. Hill, M.J. Plaza, K. Bonin, G. Holzwarth, Eur. Biophys. J. 33, 623 (2004) http://dx.doi.org/10.1007/s00249-004-0403-6[Crossref]

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0032-x