PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 6 | 989-994
Article title

Magnetohydrodynamic flows as Newtonian-type gravitational motions

Content
Title variants
Languages of publication
EN
Abstracts
EN
We study the motion of a magnetised, highly conductive fluid within the framework of Newtonian gravity. Our analysis examines whether and under what conditions magnetohydrodynamic flows can be represented as hydrodynamic ones and then as Newtonian-type gravitational motions. In the latter case we define a generalised effective density and an effective Poisson-type potential, which include the magnetic input and determine the dynamics of the magnetised system. Introducing the dynamical equivalence of the aforementioned two representations, we use it to test mass measurements based on purely gravitational motions. We also provide the generalised Raychaudhuri equation corresponding to the aforementioned effective potential and discuss its implications for the kinematics of the fluid.
Publisher

Journal
Year
Volume
8
Issue
6
Pages
989-994
Physical description
Dates
published
1 - 12 - 2010
online
5 - 9 - 2010
Contributors
  • Department of Astronomy, Aristoteleion University of Thessaloniki, 541.24, Thessaloniki, Greece, spyrou@astro.auth.gr
  • Department of Astronomy, Aristoteleion University of Thessaloniki, 541.24, Thessaloniki, Greece
References
  • [1] U. Klein, R. Wielebinski, H. W. Morsi, Astron. Astrophys. 190, 41 (1988)
  • [2] P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994) http://dx.doi.org/10.1088/0034-4885/57/4/001[Crossref]
  • [3] J.-L. Han, R. Wielebinski, Chinese J. Astron. Ast. 2, 293 (2002) http://dx.doi.org/10.1088/1009-9271/2/4/293[Crossref]
  • [4] N. I. Shakura, R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973)
  • [5] S. A. Balbus, J. F. Hawley, Astrophys. J. 376, 214 (1991) http://dx.doi.org/10.1086/170270[Crossref]
  • [6] D. Biskamp, Magnetohydrodynamic Turbulense (Cambridge University Press, Cambridge, 2003) http://dx.doi.org/10.1017/CBO9780511535222[Crossref]
  • [7] T. V. Ruzmaikina, A. A. Ruzmaikin, Sov. Astron. 14, 963 (1971)
  • [8] D. Papadopoulos, P. Esposito, Astrophys. J. 257, 10 (1982) http://dx.doi.org/10.1086/159956[Crossref]
  • [9] K. Subramanian, J. D. Barrow, Phys. Rev. D 58, 083502 (1998) http://dx.doi.org/10.1103/PhysRevD.58.083502[Crossref]
  • [10] M. Giovannini, Int. J. Mod. Phys. D 13, 391 (2004) http://dx.doi.org/10.1142/S0218271804004530[Crossref]
  • [11] K. Kleidis, N. K. Spyrou, Classical Quant. Grav. 17, 2965 (2000) http://dx.doi.org/10.1088/0264-9381/17/15/308[Crossref]
  • [12] N. K. Spyrou, C. G. Tsagas, Classical Quant. Grav. 21, 2435 (2004) http://dx.doi.org/10.1088/0264-9381/21/9/017[Crossref]
  • [13] E. N. Parker, Cosmical Magnetic Fields (Oxford University Press, Oxford, 1979)
  • [14] Y. B. Zeldovich, A. A. Ruzmaikin, D. D. Sokoloff, Magnetic Fields in Astrophysics (McGraw-Hill, New York, 1983)
  • [15] L. Mestel, Stellar Magnetism (Oxford University Press, Oxford, 1999)
  • [16] S. Chandrasekhar, Astrophys. J 158, 45 (1969) http://dx.doi.org/10.1086/150170[Crossref]
  • [17] N. K. Spyrou, In: P. G. Laskarides (Ed.), Proceedings of the 6th Hellenic Astronomical Conference (2004) 229, http://www.astro.auth.gr/elaset/helasmtg/2003/
  • [18] N. K. Spyrou, In: N. K. Spyrou, N. Stergioulas, C. Tsagas (Eds.), Cosmology and Gravitational Physics (2006) 57, http://www.astro.auth.gr/Cosmology05/
  • [19] N. K. Spyrou, In: M. Plionis, S. Cotsakis (Eds.), Modern Theoretical and Observational Cosmology (Kluwer Academic Publishers, Netherlands, 2002) 35
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0004-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.