Title variants
Languages of publication
Abstracts
Based on a possible solution to the tetron spin problem, a modification of the standard Big Bang scenario is suggested, where the advent of a space-time manifold is connected to the appearance of tetronic bound states. The metric tensor is constructed from tetron constituents and the reason for cosmic inflation is elucidated. Furthermore, there are natural dark matter candidates in the tetron model. The ratio of ordinary to dark matter in the universe is calculated to be 1:5.
Keywords
Journal
Year
Volume
Issue
Pages
771-781
Physical description
Dates
published
1 - 10 - 2010
online
22 - 7 - 2010
Contributors
author
References
- [1] R. N. Mohapatra, J. C. Pati, Phys. Rev. D 11, 566 (1975) http://dx.doi.org/10.1103/PhysRevD.11.566[Crossref]
- [2] B. Lampe, Found. Phys. 39, 215 (2009) http://dx.doi.org/10.1007/s10701-009-9278-9[Crossref]
- [3] B. Lampe, J. Phys. G 34, (2007) 1 http://dx.doi.org/10.1088/0954-3899/34/9/006[Crossref]
- [4] B. Lampe, Mod. Phys. Lett. A 23, 2835 (2008) http://dx.doi.org/10.1142/S0217732308028284[Crossref]
- [5] A. H. Guth, Phys. Rev. D 23, 347 (1981) http://dx.doi.org/10.1103/PhysRevD.23.347[Crossref]
- [6] K. Freeman, G. McNamara, In Search of Dark Matter (Birkhäuser, 2006)
- [7] S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 70, 043531 (2004) http://dx.doi.org/10.1103/PhysRevD.70.043531[Crossref]
- [8] J. M. Cline, J. Vinet, Phys. Rev. D68, 025015 (2003) http://dx.doi.org/10.1103/PhysRevD.68.025015[Crossref]
- [9] P. J. E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003) http://dx.doi.org/10.1103/RevModPhys.75.559[Crossref]
- [10] C. Wetterich, arXiv:astro-ph/0110211v1
- [11] E. Seiler, A. Patrascioiu, Phys. Rev. D 64, 065006 (2001) http://dx.doi.org/10.1103/PhysRevD.64.065006[Crossref]
- [12] P. Hasenfratz, F. Niedermayer, Nucl. Phys. B 596, 481 (2001) http://dx.doi.org/10.1016/S0550-3213(00)00696-9[Crossref]
- [13] R. C. Johnson, Phys. Lett. 114 B, 147 (1982)
- [14] J. Conway, D. Smith, On Octonions and Quaternions (Peters Publishing, Natick, MA,2003)
- [15] I. L. Kantor, A. S. Solodovnikov, Hypercomplex Numbers - an Elementary Introduction to Algebras (Springer-Verlag, Berlin, 1989)
- [16] R. D. Schafer, An Introduction to Nonassociative Algebras (Academic Press, New York and London, 1966)
- [17] G. M. Dixon, arXiv:hep-th/9504040v1
- [18] E. Magliaroac, C. Perinibc, C. Rovelli, arXiv:0704.0992v2 [WoS]
- [19] J. D. Bekenstein, Phys. Rev. D 70, 083509 (2004) http://dx.doi.org/10.1103/PhysRevD.70.083509[Crossref]
- [20] E. Cartan, Ann. Sci. Ecole Norm. S. 41, 1 (1924)
- [21] J. S. Griffith, Irreducible Tensor Methods for Molecular Symmetry Groups (Dover Publications, 2006)
- [22] G. R. Farrar, P. J. Peebles, arXiv:astro-ph/0307316
- [23] G. W. Anderson, S. M. Carroll, arXiv:astro-ph/9711288
- [24] B. A. Bassett, S. Tsujikawa, D. Wands, arXiv:astro-ph/0507632v2
- [25] A. O. Barvinsky, A. Yu. Kamenshchik, A. A. Starobinsky, J. Cosmol. Astropart. P. 11, 21 (2008) http://dx.doi.org/10.1088/1475-7516/2008/11/021[Crossref]
- [26] F. Bezrukov, M. Shaposhnikov, arXiv:hep-th/0710.3755v2
- [27] S. Weinberg, E. Witten, Phys. Lett. B 96, 59 (1980) http://dx.doi.org/10.1016/0370-2693(80)90212-9[Crossref]
- [28] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B 241, 333 (1984) http://dx.doi.org/10.1016/0550-3213(84)90052-X[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0002-3