Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 5 | 689-698

Article title

A Q-Ising model application for linear-time image segmentation

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A computational method is presented which efficiently segments digital grayscale images by directly applying the Q-state Ising (or Potts) model. Since the Potts model was first proposed in 1952, physicists have studied lattice models to gain deep insights into magnetism and other disordered systems. For some time, researchers have realized that digital images may be modeled in much the same way as these physical systems (i.e., as a square lattice of numerical values). A major drawback in using Potts model methods for image segmentation is that, with conventional methods, it processes in exponential time. Advances have been made via certain approximations to reduce the segmentation process to power-law time. However, in many applications (such as for sonar imagery), real-time processing requires much greater efficiency. This article contains a description of an energy minimization technique that applies four Potts (Q-Ising) models directly to the image and processes in linear time. The result is analogous to partitioning the system into regions of four classes of magnetism. This direct Potts segmentation technique is demonstrated on photographic, medical, and acoustic images.

Keywords

Publisher

Journal

Year

Volume

8

Issue

5

Pages

689-698

Physical description

Dates

published
1 - 10 - 2010
online
22 - 7 - 2010

References

  • [1] D. L. Pham, C. Xu, J. L. Prince, Annu. Rev. Biomed. Eng. 2, 315 (2000) http://dx.doi.org/10.1146/annurev.bioeng.2.1.315[Crossref]
  • [2] Y. H. Yang, M. J. Buckley, S. Dudoit, T. P. Speed, J. Comput. Graph. Stat. 11, 108 (2002) http://dx.doi.org/10.1198/106186002317375640[Crossref]
  • [3] S. Peng, B. Urbanc, L. Cruz, B. T. Hyman, H. E. Stanley, P. Natl. Acad. Sci. USA 100, 3847 (2003) http://dx.doi.org/10.1073/pnas.0230490100[Crossref]
  • [4] V. Grau, A. U. J. Mewes, M. Alcañiz, IEEE T. Med. Imaging 23, 447 (2004) http://dx.doi.org/10.1109/TMI.2004.824224[Crossref]
  • [5] S. Hadjidemetriou, C. Studholme, S. Mueller, M. Weiner, N. Schuff, Med. Image Anal. 13, 36–48 (2009) http://dx.doi.org/10.1016/j.media.2008.05.003[Crossref]
  • [6] X. Descombes, M. Moctezuma, H. Maître, J.-P. Rudant, Signal Process. 55, 123–132 (1996) http://dx.doi.org/10.1016/S0165-1684(96)00125-9[Crossref]
  • [7] F. W. Bentrem, W. E. Avera, J. Sample, Sea Technol. 47, 37 (2006)
  • [8] T. Asano, D. Z. Chen, N. Katoh, T. Tokuyama, Int. J. Comput. Geom. Ap. 11, 145 (2001) http://dx.doi.org/10.1142/S0218195901000420[Crossref]
  • [9] E. Ising, Z. Phys. 31, 253 (1925) http://dx.doi.org/10.1007/BF02980577[Crossref]
  • [10] R. B. Potts, P. Camb. Philos. Soc. 48, 106 (1952) http://dx.doi.org/10.1017/S0305004100027419[Crossref]
  • [11] F. W. Bentrem, Provisional Patent Application, Navy Case No. 99, 755 (2009)
  • [12] K. Tanaka, J. Phys. A-Math. Gen. 35, R81 (2002) http://dx.doi.org/10.1088/0305-4470/35/37/201[Crossref]
  • [13] J. P. Neirotti, S. M. Kurcbart, N. Caticha, Phys. Rev. E 68, 031911 (2003) http://dx.doi.org/10.1103/PhysRevE.68.031911[Crossref]
  • [14] M. Blatt, S. Wiseman, E. Domany, Phys. Rev. Lett. 76, 3251 (1996) http://dx.doi.org/10.1103/PhysRevLett.76.3251[Crossref]
  • [15] M. Blatt, S. Wiseman, E. Domany, Neural Computation 9, 1805 (1997) http://dx.doi.org/10.1162/neco.1997.9.8.1805[Crossref]
  • [16] S. Wiseman, M. Blatt, E. Domany, Phys. Rev. E 57, 3767 (1998) http://dx.doi.org/10.1103/PhysRevE.57.3767[Crossref]
  • [17] K. Tanaka, H. Shouno, M. Okadak, D. M. Titterington, J. Phys. A-Math. Gen. 37, 8675 (2004) http://dx.doi.org/10.1088/0305-4470/37/36/007[Crossref]
  • [18] E. Sharon, A. Brandt, R. Basriy, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, Hilton Head Island, 2000) 1, 70
  • [19] P. F. Felzenszwalb, D. P. Huttenlocher, Int. J. Comput. Vision 59, 167 (2004) http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77[Crossref]
  • [20] A. X. Falcão, P. A. V. Miranda, A. Rocha, Lect. Notes Comp. Sci. 4179/2006, 138 (2006) http://dx.doi.org/10.1007/11864349_13[Crossref]
  • [21] D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)
  • [22] J. C. Lee Thermal Physics: Entropy and Free Energies (World Scientific Publishing Company, Singapore, 2002)
  • [23] L. Onsager, Phys. Rev. 65, 117 (1944) http://dx.doi.org/10.1103/PhysRev.65.117[Crossref]
  • [24] D. Martin, C. Fowlkes, D. Tal, J. Malik, Proceedings of the 8th International Conference on Computer Vision 2, 416 (2001)
  • [25] F. W. Bentrem, J. Sample, M. T. Kalcic, M. E. Duncan, Proceedings of Oceans 2002 (MTS/IEEE, Biloxi) 1, 7 (2002)
  • [26] F. W. Bentrem, J. T. Sample, M. M. Harris, Scientific Computing 25, 30 (2008)
  • [27] R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941) [WoS]
  • [28] L. Kang, L. Guo, Phys. Lett. A 330, 198 (2004) http://dx.doi.org/10.1016/j.physleta.2004.07.061[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0165-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.