Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 5 | 811-818

Article title

B and N-doped double walled carbon nanotube: a theoretical study

Content

Title variants

Languages of publication

EN

Abstracts

EN
The structural and electronic properties of boron and nitrogen atom substitutional doping in (8,0)@(13,0) (semiconductor@semiconductor) and (6,0)@(13,0) (metallic@semiconductor) double walled carbon nanotubes, were obtained by using the first-principle calculations based on the density functional theory. In this framework, the electronic density plays a central role and it was obtained from a self-consistent field form. When boron or nitrogen substitutes a carbon atom the structure remains practically the same with negligible deformation observed around defects in all configurations considered. The electronic band structure results indicate that the boron doped systems behave as a p-type impurity, however, the nitrogen doped systems behave as an n-type impurity. In all the systems investigated here, we found that, in the cases of semiconductor@semiconductor tubes, they were the easiest to incorporate a B atom in the outer-wall and an N atom in the inner-wall of the nanotube.

Publisher

Journal

Year

Volume

8

Issue

5

Pages

811-818

Physical description

Dates

published
1 - 10 - 2010
online
22 - 7 - 2010

Contributors

  • Departamento de Física, Universidade Federal do Maranhão, 65080-040, São Luis, Maranhão, Brazil
author
  • Departamento de Física, Universidade Federal do Maranhão, 65080-040, São Luis, Maranhão, Brazil
  • Departamento de Física, Universidade Federal do Maranhão, 65080-040, São Luis, Maranhão, Brazil

References

  • [1] S. Iijima, Nature 354, 56 (1991) http://dx.doi.org/10.1038/354056a0[Crossref]
  • [2] J. Kong et al., Science 287, 622 (2000) http://dx.doi.org/10.1126/science.287.5453.622[Crossref]
  • [3] P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000) http://dx.doi.org/10.1126/science.287.5459.1801[Crossref]
  • [4] S. Chopra, A. Pham, J. Gaillard, A. Parker, A. M. Rao, Appl. Phys. Lett. 80, 4632 (2002) http://dx.doi.org/10.1063/1.1486481[Crossref]
  • [5] B. C. Liu, S. C. Lyu, T. J. Lee, Chem. Phys. Lett. 373, 475 (2003)
  • [6] R. C. Batra, A. Sears, Int. J. Solids Struct. 44, 7577 (2007) http://dx.doi.org/10.1016/j.ijsolstr.2007.04.029[Crossref]
  • [7] R. Moradian, S. Azadi, H. Refii-Tabar, J. Phys. - Condens. Mat. 19, 176209 (2007) http://dx.doi.org/10.1088/0953-8984/19/17/176209[Crossref]
  • [8] C. Valls, M. Prez-Mendoza, M. T. Martnez, W. K. Maser, A. M. Benito, Diam. Relat. Mater. 16, 1087 (2007) http://dx.doi.org/10.1016/j.diamond.2006.11.007[Crossref]
  • [9] M. Cadek, J. N. Coleman, K. P. Ryan, V. Nicolosi, G. Bister, Nano Lett. 4(2), 353 (2004) http://dx.doi.org/10.1021/nl035009o[Crossref]
  • [10] T. Sugai, H. Yoshida, T. Shimada, T. Okazaki, H. Shinohara, Nano Lett. 3, 769 (2003) http://dx.doi.org/10.1021/nl034183+[Crossref]
  • [11] S. C. Lyu, T. J. Lee, C. W. Yang, C. J. Lee, Chem. Commun. 12, 1404 (2003) http://dx.doi.org/10.1039/b302322b[Crossref]
  • [12] H. Muramatsu et al., J. Nanosci. Nanotechno. 5, 404 (2005) http://dx.doi.org/10.1166/jnn.2005.060[Crossref]
  • [13] R. Czerw et al., Nano Lett. 1, 457 (2001) http://dx.doi.org/10.1021/nl015549q[Crossref]
  • [14] D. L. Carrol et al., Phys. Rev. Lett. 81, 2332 (1998) http://dx.doi.org/10.1103/PhysRevLett.81.2332[Crossref]
  • [15] M. Endo et al., Nano Lett. 5, 1099 (2005) http://dx.doi.org/10.1021/nl050627l[Crossref]
  • [16] M. Terrones, Int. Mater. Rev. 49, 325 (2004) http://dx.doi.org/10.1179/174328004X5655[Crossref]
  • [17] P. Hohenberg, W. Kohn, Phys. Rev. 136, 864B (1964) http://dx.doi.org/10.1103/PhysRev.136.B864[Crossref]
  • [18] P. Ordejon, J. M. Soler, Phys. Rev. B 53, 10441 (1996) http://dx.doi.org/10.1103/PhysRevB.53.R10441[Crossref]
  • [19] W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965) http://dx.doi.org/10.1103/PhysRev.140.A1133[Crossref]
  • [20] E. Artacho, D. Snchez-Portal, P. Ordejn, A. Garcia, J. M. Soler, Phys. Status Solidi B 215, 809 (1999) http://dx.doi.org/10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0[Crossref]
  • [21] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3865[Crossref]
  • [22] N. Troullier, J. L. Martins, Phys. Rev. B 43, 1993 (1991) http://dx.doi.org/10.1103/PhysRevB.43.1993[Crossref]
  • [23] L. Kleinman, D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982) http://dx.doi.org/10.1103/PhysRevLett.48.1425[Crossref]
  • [24] H. J. Monkhorstand, J. D. Pack, Phys. Rev. B 13, 5188 (1976) http://dx.doi.org/10.1103/PhysRevB.13.5188[Crossref]
  • [25] S. Y. Kim et al., Chem. Phys. Lett. 413, 300 (2005) http://dx.doi.org/10.1016/j.cplett.2005.07.093[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0161-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.