PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 5 | 709-716
Article title

Effect of Bohm potential on a charged gas

Content
Title variants
Languages of publication
EN
Abstracts
EN
Bohm’s interpretation of Quantum Mechanics leads to the derivation of a Quantum Kinetic Equation (QKE): in the present work, propagation of waves in charged quantum gases is investigated starting from this QKE. Dispersion relations are derived for fully and weakly degenerate fermions and bosons (for the latter above critical temperature) and the differences discussed. Use of a kinetic equation permits investigation of “Landau-type” damping: it is found that the presence of damping in fermion gases is dependent upon the degree of degeneracy, whereas it is always present in boson gases. In fully degenerate fermions a phenomenon appears that is akin to the “zero sound” propagation.
Publisher

Journal
Year
Volume
8
Issue
5
Pages
709-716
Physical description
Dates
published
1 - 10 - 2010
online
22 - 7 - 2010
Contributors
  • Laboratorio di Ingegneria Nucleare di Montecuccolino Alma Mater Studiorum, Università di Bologna, Via dei Colli 16, I-40136, Bologna, Italy, domiziano.mostacci@unibo.it
  • Laboratorio di Ingegneria Nucleare di Montecuccolino Alma Mater Studiorum, Università di Bologna, Via dei Colli 16, I-40136, Bologna, Italy
  • Laboratorio di Ingegneria Nucleare di Montecuccolino Alma Mater Studiorum, Università di Bologna, Via dei Colli 16, I-40136, Bologna, Italy
References
  • [1] Y. D. Jung, Phys. Plasmas 8, 3842 (2001) http://dx.doi.org/10.1063/1.1386430[Crossref]
  • [2] L. Stenflo, P. K. Shukla, M. Marklund, Europhys. Lett. 74, 844 (2006) http://dx.doi.org/10.1209/epl/i2006-10032-x[Crossref]
  • [3] F. Haas, G. Manfredi, M. Feix, Phys. Rev. E 62, 2763 (2000)
  • [4] D. Anderson, B. Hall, M. Lisak, M. Marklund, Phys. Rev. E 65, 046417 (2002)
  • [5] G. Manfredi, F. Haas, Phys. Rev. B 64, 075316 (2001)
  • [6] G. Brodin, M. Marklund, Phys. Plasmas, arXiv:0804.0335v1
  • [7] D. Mostacci, V. Molinari, F. Pizzio, Europhys. Lett. 82, 20002 (2008) http://dx.doi.org/10.1209/0295-5075/82/20002[Crossref]
  • [8] D. Mostacci, V. Molinari, F. Pizzio, Transport. Theor. Stat. 37, 589 (2008) http://dx.doi.org/10.1080/00411450802526269[Crossref]
  • [9] L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968) 431
  • [10] L. D. Landau, J. Phys.-USSR 10, 25 (1946)
  • [11] N. A. Krall, A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973) 375
  • [12] V. Molinari, P. Peerani, Nuovo Cimento D 10, 119 (1988) http://dx.doi.org/10.1007/BF02450093[Crossref]
  • [13] R. L. Liboff, Kinetic Theory. Classical, Quantum, Relativistic Descriptions (Prentice Hall, Englewood Cliffs, USA, 1990) 363
  • [14] E. M. Lifshitz, L. P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, UK, 1981) 166
  • [15] S. H. Glenzeretal., Phys. Rev. Lett. 98, 065002 (2007) http://dx.doi.org/10.1103/PhysRevLett.98.065002[Crossref]
  • [16] Yu. L. Klimontovich, V. P. Silin, Zh. Eks. Teor. Fiz. + 23, 151 (1952)
  • [17] E. M. Lifshitz, L. P. Pitaevskii, Statistical Physics, part 2 (Pergamon Press, Oxford, UK, 1980) Chap. 1
  • [18] R. P. Feynman, Statistical Mechanics - Frontiers in Physics (W. A. Benjamins INC, Reading, Mass., 1972) 30
  • [19] R. K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, UK, 1972)
  • [20] T. M. Sanders, Contemp. Phys. 42, 151 (2001) http://dx.doi.org/10.1080/00107510110052250[Crossref]
  • [21] J. Steinhauer, R. Ozeri, N. Katz, N. Davidson, Phys. Rev. Lett 88, 120407 (2002) http://dx.doi.org/10.1103/PhysRevLett.88.120407[Crossref]
  • [22] M. L. Chiofalo, S. Conti, S. Stringari, M. P. Tosi, J. Phys.-Condens. Mat. 7, L85 (1995) http://dx.doi.org/10.1088/0953-8984/7/7/001[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0160-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.