Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 5 | 717-725

Article title

Alternative method for the measurement of the temperature of a Bose-Einstein condensate

Content

Title variants

Languages of publication

EN

Abstracts

EN
Usually the temperature in a Bose-Einstein condensate is experimentally deduced resorting to the comparison between the Maxwell-Boltzmann velocity distribution function and the density profile in momentum space. Though a successful method it is merely an approximation, since it also implies the use of classical statistical mechanics at temperatures close to the condensation temperature where quantum effects play a relevant role and cannot be neglected. The present work puts forward an alternative method in which we use an ultra-intense light pulse and a nonlinear optical material as detectors for differences in times-of-flight, and in this way the temperature is deduced.

Publisher

Journal

Year

Volume

8

Issue

5

Pages

717-725

Physical description

Dates

published
1 - 10 - 2010
online
22 - 7 - 2010

Contributors

author
  • Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, C.P. 09340, México, D.F., México
  • Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, C.P. 09340, México, D.F., México
  • Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, C.P. 09340, México, D.F., México

References

  • [1] S. N. Bose, Z. Phys. 26, 178 (1924). http://dx.doi.org/10.1007/BF01327326[Crossref]
  • [2] A. Einstein, Sitzber. K. Preuss. Aka. 3 (1925)
  • [3] S. Stenholm, Phys. Rep. 363, 173 (2002) http://dx.doi.org/10.1016/S0370-1573(01)00095-3[Crossref]
  • [4] R. K. Phatria, Statistical Mechanics (Butterworth Heineman, Oxford, 1996)
  • [5] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961) http://dx.doi.org/10.1103/PhysRevLett.7.118[Crossref]
  • [6] T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000) http://dx.doi.org/10.1103/RevModPhys.72.545[Crossref]
  • [7] L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2004)
  • [8] K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.3969[Crossref]
  • [9] M. R. Andrews et al., Science 75, 84 (1996) http://dx.doi.org/10.1126/science.273.5271.84[Crossref]
  • [10] C. J. Pethick, H. Smith, Bose-Einstein Condensation in Diluted Gases (Cambrige University Press, Cambrige, 2006)
  • [11] F. Dalfovo, S. Giorgini, L. P. Pitaevski, S. Stringari, Rev. Mod. Phys. 71, 463 (1999) http://dx.doi.org/10.1103/RevModPhys.71.463[Crossref]
  • [12] M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2002)
  • [13] B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules (Longman, New York, 1983)
  • [14] L. de la Peña, Introducción a la Mecánica Cuántica (Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México, 2006)
  • [15] A. J. Legget, Rev. Mod. Phys. 73, 307 (2001) http://dx.doi.org/10.1103/RevModPhys.73.307[Crossref]
  • [16] J. R. Ensher, PhD thesis, University of Colorado (Boulder, USA, 1998)
  • [17] R. D. Guenther, Modern Optics (John Wiley and Sons, New York, 1990)
  • [18] K. G. Libbrecht, M. W. Libbrecht, Am. J. Phys. 74, 1055 (2006) http://dx.doi.org/10.1119/1.2335476[Crossref]
  • [19] G. Chartier, Introduction to Optics (Springer-Verlag, New York, 2005)
  • [20] W. Petrich M. H. Anderson, J. R. Ensher, E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995) http://dx.doi.org/10.1103/PhysRevLett.74.3352[Crossref]
  • [21] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980)
  • [22] M. L. Boas, Mathematical Methods in the Physical Sciences (John Wiley and Sons, New Jersey, 2006)
  • [23] J. J. McClelland, In: F. B. Dunning, R. G. Haulet (Eds.), Atomic, Molecular, and Optical Physics: Atoms and molecules (Academic Press, New York, 1996) 147
  • [24] H. J. Metcalf, P. van de Strate, Laser Cooling and Trapping (Springer-Verlag, Heidelberg, 1999)
  • [25] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993)
  • [26] R. Eisenschitz, Statistical Theory of Irreversible Processes (Oxford University Press, London, 1958)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0155-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.