Preferences help
enabled [disable] Abstract
Number of results
2010 | 8 | 5 | 717-725
Article title

Alternative method for the measurement of the temperature of a Bose-Einstein condensate

Title variants
Languages of publication
Usually the temperature in a Bose-Einstein condensate is experimentally deduced resorting to the comparison between the Maxwell-Boltzmann velocity distribution function and the density profile in momentum space. Though a successful method it is merely an approximation, since it also implies the use of classical statistical mechanics at temperatures close to the condensation temperature where quantum effects play a relevant role and cannot be neglected. The present work puts forward an alternative method in which we use an ultra-intense light pulse and a nonlinear optical material as detectors for differences in times-of-flight, and in this way the temperature is deduced.
Physical description
1 - 10 - 2010
22 - 7 - 2010
  • [1] S. N. Bose, Z. Phys. 26, 178 (1924).[Crossref]
  • [2] A. Einstein, Sitzber. K. Preuss. Aka. 3 (1925)
  • [3] S. Stenholm, Phys. Rep. 363, 173 (2002)[Crossref]
  • [4] R. K. Phatria, Statistical Mechanics (Butterworth Heineman, Oxford, 1996)
  • [5] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961)[Crossref]
  • [6] T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)[Crossref]
  • [7] L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2004)
  • [8] K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)[Crossref]
  • [9] M. R. Andrews et al., Science 75, 84 (1996)[Crossref]
  • [10] C. J. Pethick, H. Smith, Bose-Einstein Condensation in Diluted Gases (Cambrige University Press, Cambrige, 2006)
  • [11] F. Dalfovo, S. Giorgini, L. P. Pitaevski, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)[Crossref]
  • [12] M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2002)
  • [13] B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules (Longman, New York, 1983)
  • [14] L. de la Peña, Introducción a la Mecánica Cuántica (Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México, 2006)
  • [15] A. J. Legget, Rev. Mod. Phys. 73, 307 (2001)[Crossref]
  • [16] J. R. Ensher, PhD thesis, University of Colorado (Boulder, USA, 1998)
  • [17] R. D. Guenther, Modern Optics (John Wiley and Sons, New York, 1990)
  • [18] K. G. Libbrecht, M. W. Libbrecht, Am. J. Phys. 74, 1055 (2006)[Crossref]
  • [19] G. Chartier, Introduction to Optics (Springer-Verlag, New York, 2005)
  • [20] W. Petrich M. H. Anderson, J. R. Ensher, E. A. Cornell, Phys. Rev. Lett. 74, 3352 (1995)[Crossref]
  • [21] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980)
  • [22] M. L. Boas, Mathematical Methods in the Physical Sciences (John Wiley and Sons, New Jersey, 2006)
  • [23] J. J. McClelland, In: F. B. Dunning, R. G. Haulet (Eds.), Atomic, Molecular, and Optical Physics: Atoms and molecules (Academic Press, New York, 1996) 147
  • [24] H. J. Metcalf, P. van de Strate, Laser Cooling and Trapping (Springer-Verlag, Heidelberg, 1999)
  • [25] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993)
  • [26] R. Eisenschitz, Statistical Theory of Irreversible Processes (Oxford University Press, London, 1958)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.