PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 5 | 789-797
Article title

Molecular dynamics simulation of zirconia melting

Content
Title variants
Languages of publication
EN
Abstracts
EN
The melting point for the tetragonal and cubic phases of zirconia (ZrO2) was computed using Z-method microcanonical molecular dynamics simulations for two different interaction models: the empirical Lewis-Catlow potential versus the relatively new reactive force field (ReaxFF) model. While both models reproduce the stability of the cubic phase over the tetragonal phase at high temperatures, ReaxFF also gives approximately the correct melting point, around 2900 K, whereas the Lewis-Catlow estimate is above 6000 K.
Publisher
Journal
Year
Volume
8
Issue
5
Pages
789-797
Physical description
Dates
published
1 - 10 - 2010
online
22 - 7 - 2010
References
  • [1] C. A. J. Fisher, H. Matsubara, Comp. Mater. Sci. 14, 177 (1999) http://dx.doi.org/10.1016/S0927-0256(98)00104-9[Crossref]
  • [2] M. Kilo, R. A. Jackson, G. Borchardt, Phil. Mag. Lett. 83, 3309 (2003)
  • [3] F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, H. Okazaki, J. Phys. Soc. Jpn. 61, 2848 (1992) http://dx.doi.org/10.1143/JPSJ.61.2848[Crossref]
  • [4] F. Shimojo, H. Okazaki, J. Phys. Soc. Jpn. 61, 4106 (1992) http://dx.doi.org/10.1143/JPSJ.61.4106[Crossref]
  • [5] H. W. Brinkman, W. J. Briels, H. Verweij, Chem. Phys. Lett. 247, 386 (1995) http://dx.doi.org/10.1016/S0009-2614(95)01231-1[Crossref]
  • [6] Y. W. Tang, Q. Zhang, K. Y. Chan, Chem. Phys. Lett. 385, 202 (2004) http://dx.doi.org/10.1016/j.cplett.2003.12.097[Crossref]
  • [7] R. Krishnamurty, Y. G. Yoon, D. J. Srolovitz, R. Car, J. Am. Ceram. Soc. 87, 1821 (2004) http://dx.doi.org/10.1111/j.1151-2916.2004.tb06325.x[Crossref]
  • [8] M. Kilo, Diffus. De. A 242–244, 185 (2005)
  • [9] G. V. Lewis, C. R. A. Catlow, J. Phys. C Solid State 18, 1149 (1985) http://dx.doi.org/10.1088/0022-3719/18/6/010[Crossref]
  • [10] A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001) http://dx.doi.org/10.1021/jp004368u[Crossref]
  • [11] A. C. T. van Duin, B. V. Merinov, S. S. Jang, W. A. Goddard, J. Phys. Chem. A 112, 3133 (2008) http://dx.doi.org/10.1021/jp076775c[Crossref]
  • [12] A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, B. Johansson, Phys. Rev. B 73, 012201 (2006) http://dx.doi.org/10.1103/PhysRevB.73.012201[Crossref]
  • [13] A. B. Belonoshko et al., Phys. Rev. B 76, 064121 (2007) http://dx.doi.org/10.1103/PhysRevB.76.064121[Crossref]
  • [14] A. B. Belonoshko, Geochim. Cosmochim. Ac. 58, 4039 (1994) http://dx.doi.org/10.1016/0016-7037(94)90265-8[Crossref]
  • [15] A. B. Belonoshko, Geochim. Cosmochim. Ac. 58, 1557 (1994) http://dx.doi.org/10.1016/0016-7037(94)90558-4[Crossref]
  • [16] A. B. Belonoshko, A. Rosengren, L. Burakovsky, D. L. Preston, B. Johansson, Phys. Rev. B 79, 220102 (2009) http://dx.doi.org/10.1103/PhysRevB.79.220102[Crossref]
  • [17] N. Ishizawa, Y. Matsushima, M. Hayashi, M. Ueki, Acta Crystallogr. B 55, 726 (1999) http://dx.doi.org/10.1107/S0108768199005108[Crossref]
  • [18] K. Refson, Comput. Phys. Commun. 126, 310 (2000) http://dx.doi.org/10.1016/S0010-4655(99)00496-8[Crossref]
  • [19] N. S. Fateeva, L. F. Vereshchagin, JETP Lett.+ 14, 153 (1971)
  • [20] J. M. Shaner, G. R. Gathers, C. Minichino, High Temp.-High Press. 9, 331 (1977)
  • [21] A. B. Belonoshko et al., Phys. Rev. Lett. 92, 195701 (2004) http://dx.doi.org/10.1103/PhysRevLett.92.195701[Crossref]
  • [22] A. B. Belonoshko et al., Phys. Rev. Lett. 100, 135701 (2008) http://dx.doi.org/10.1103/PhysRevLett.100.135701[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0152-3
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.