Preferences help
enabled [disable] Abstract
Number of results
2010 | 8 | 4 | 604-619
Article title

A parallel three-dimensional scour model to predict flow and scour below a submarine pipeline

Title variants
Languages of publication
A three-dimensional Lattice Boltzmann flow and scour model is developed to simulate time-dependent scour below a submarine pipeline. The proposed model presented in this paper is able to predict streamwise and spanwise propagations of scour with respect to lattice unit of time. It is evident from this study that the existence of a spiral vortex in the proximity of the span shoulder is quite noteworthy. It is revealed that the critical regime of the 2-D scour process is found to be up to one pipe diameter away in both directions from the middle of the unsupported length of pipelines. The equilibrium maximum scour depth and the shape of streamwise equilibrium scour hole compare well with the available experimental data. The speed of propagation of scour along the pipeline length maintains an almost constant rate, which is consistent with the experimental observations found in literature. In addition, it is seen that the scour slope at the shoulder region remains fairly constant throughout the whole scour process.
Physical description
1 - 8 - 2010
22 - 5 - 2010
  • School of civil and resource engineering, The University of Western Australia, 35, Stirling HW, Crawley, WA, 6009, Australia
  • School of civil and resource engineering, The University of Western Australia, 35, Stirling HW, Crawley, WA, 6009, Australia
  • [1] R. Bruschi, M. Drago, M. Venturi, G. Jiao, T. Sotberg, Pipeline reliability across erodible/active seabeds, Proceedings of 1997 Offshore Technology Conference, Houston, Texas, USA, OTC 8493 (1997)
  • [2] Y. Mao, The interaction between a pipeline and an erodible bed, Series Paper, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark (1986)
  • [3] B. M. Sumer, H. R. Jensen, Y. Mao, J. Fredse, J. Waterway Div.-ASCE 114, 599 (1988)
  • [4] B. M. Sumer, C. Truelsen, T. Sichmann, J. Fredsoe, Coast. Eng. 42, 313 (2001)[Crossref]
  • [5] F. P. Gao, B. Yang, Y. X. Wu, S. M. Yan, Appl. Ocean Res. 28, 291 (2006)[Crossref]
  • [6] S. Ushijima, J. Comput. Phys. 125, 71 (1996)[Crossref]
  • [7] P. L. Bhatnagar, E. P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)[Crossref]
  • [8] D. Yu, R. Mei, L. Lou, W. Shyy, Prog. Aerosp. Sci. 39, 329 (2003)[Crossref]
  • [9] A. Dupuis, PhD thesis, University of Geneva (Geneva, Switzerland, 2002)
  • [10] S. Hou, J. Sterling, S. Chen, G. D. Doolen, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (1994)
  • [11] A. Dupuis, B. Chopard, J. Comput. Phys. 178, 161 (2002)[Crossref]
  • [12] D. Liang, L. Cheng, Li. F., Coast. Eng. 52, 43 (2005)[Crossref]
  • [13] F. Li, L. Cheng, J. Waterway Div.-ASCE 127, 106 (2001)
  • [14] F. Li, L. Cheng, J. Hydraul. Eng.-ASCE 125, 400 (1999)[Crossref]
  • [15] B. Brors, J. Hydraul. Eng.-ASCE 125, 511 (1999)[Crossref]
  • [16] R. Soulsby, Dynamics of marine sands: a manual for practical applications (Thomas Telford Publications, London, 1997)
  • [17] Z. Zunic, M. Hribersek, L. Skerget, J. Ravnik, 3D lid driven cavity flow by mixed boundary and finite element method, European Conference on Computational Fluid Dynamics, TU Delft, The Netherlands, 2006 (2006)
  • [18] C. K. Aidun, N. G. Triantafillopoulos, Phys. Fluids 3, 2081 (1991)[Crossref]
  • [19] J. R. Koseff, R. L. Street, J. Fluid. Eng.-T. ASME 106, 390 (1984)[Crossref]
  • [20] A. K. Prasad, J. R. Koseff, Phys. Fluids 1, 208 (1989)[Crossref]
  • [21] T. W. H. Sheu, S. F. Tsai, Comput. Fluids 31, 911 (2002)[Crossref]
  • [22] P. Shanker, M. D. Deshpande, Annu. Rev. Fluid Mech. 32, 93 (2000)[Crossref]
  • [23] J.-L. Guermond, C. Migeon, G. Pineau, L. Quartapelle, J. Fluid Mech. 450, 169 (2002)[Crossref]
  • [24] A. R. Davies, J. L. Summers, Wilson, M.C.T., Parallel Computaional Fluid Dynamics-New Frontiers and Multi-Disciplinary Applications, 265 (2003)
  • [25] G. Guj, F. Stella, J. Comput. Phys. 106, 286 (1993)
  • [26] Y. Kato, H. Kawai, T. Tanahashi, JSME Int. J. II-Fluid. 33, 675 (1990)
  • [27] V. Babu, S. A. Korpela, Comput. Fluids 23, 675 (1994)[Crossref]
  • [28] C. H. K. Williamson, Annu. Rev. Fluid Mech. 28, 477 (1996)[Crossref]
  • [29] T. E. Tezduyar, R. Shih, J. Eng. Mech.-ASCE 117, 854 (1991)[Crossref]
  • [30] C. Lie, L. Cheng, K. Kavanagh, Comput. Method. Appl. M. 910, 2909 (2001)
  • [31] R. D. Henderson, J. Fluid Mech. 352, 65 (1997)[Crossref]
  • [32] M. Braza, P. Chassaing, Ha H. Minh, J. Fluid Mech. 165, 79 (1986)[Crossref]
  • [33] H. J. Niemann, N. Holscher, J. Wind Eng. Ind. Aerod. 33, 197 (1990)[Crossref]
  • [34] C. Lei, PhD thesis, University of Western Australia (Crawley, Australia, 2000)
  • [35] V. Kalro, T. Tezduyar, Parallel Comput. 23, 1235 (1997)[Crossref]
  • [36] D. F. L. Labble, P. A. Wilson, J. Fluid. Struct. 23, 1168 (2007)[Crossref]
  • [37] B. M. Sumer, J. Fredsoe, The Mechanics of Scour in the Marine Environment (World Scientific, Singapore, 2002)
  • [38] S. Dey, N. P. Singh, J. Hydraul. Eng.-ASCE 134, 588 (2008)[Crossref]
  • [39] W. Leeuwestein, E. W. Bijker, E. B. Peerbolte, H. G. Wind, The natural selfburial of submarine pipelines, Proc 4th Int. Conf. on behaviour of offshore structure (Elsevier, 1985) 717
  • [40] K. Yeow, PhD thesis, The University of Western Australia (Perth, Australia, 2007)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.